Open Access Open Access  Restricted Access Subscription or Fee Access

Dense 3D Displacement and Strain Measurement Framework of Miter Gates Using Computer Vision

YASUTAKA NARAZAKI, VEDHUS HOSKERE, BILLIE F. SPENCER, STUART FOLTZ, MATTHEW D. SMITH

Abstract


This paper investigates the framework of vision-based dense 3D displacement and strain measurement using a digital camera. The framework has three components: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected accuracy of the measurement, and (iii) selection of the measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. Physics-based graphics model (PBGM) is used effectively to simulate the vision-based measurements in a photo-realistic environment and evaluate the performance of different methods and measurement settings by comparing the estimated values with the ground-truth values. The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.


DOI
10.12783/shm2019/32462

Full Text:

PDF