Open Access Open Access  Restricted Access Subscription Access

Effect of Curing Temperature of Epoxy Resin on the Electrical Response of Carbon Nanotube Yarn Monofilament Composites



The cyclic thermoresistive response of individual carbon nanotube yarns (CNTYs) embedded into epoxy resins is investigated. The influence of the temperature at which the epoxy resin cures on the thermoresistive response is investigated by using two epoxy resins, one that cures at room temperature and the other one that cures at 130 °C. Heating-cooling cycles ranging from room temperature (RT, 25 °C) to 80 °C, incremental cycles (RT to 40 °C, RT to 60 °C and RT to 80 °C) and incremental heating-dwell cycles are applied to monofilament composites, while their electrical resistance is simultaneously recorded. The monofilament composites showed a negative temperature coefficient of resistance during the heating-cooling cycles of -7.07x10-4 °C-1 for specimens cured at high temperature, and -5.93x10-4 °C-1 for specimens cured at room temperature. The hysteresis after the different heating-cooling cycles was slightly smaller for specimens cured at 130 °C, in comparison to specimens cured at room temperature. Several factors including the intrinsic thermoresistivity of CNTY, level of infiltration and the effect of curing temperature may explain the thermoresistive sensitivity of the monofilament composites.


Full Text:



Thostenson E.T., Chou T.-W. 2006. “Carbon nanotube networks: sensing of distributed strain and damage forlife prediction and self-healing”. Adv. Mater. 18: 2837-2841.

Thostenson E.T., Chou T.-W. 2008. “Real time in situ sensing of damage evolution in advanced fibercomposites using carbon nanotube networks”. Nanotechnology. 19: 215713-215719.

Anike J., Le H., Brodeur G., Kadavan M., Abot J.L. 2017. “Piezoresistive response of integrated CNT yarnsunder compression and tension: the effect of lateral constraint”. J. Carbon Research 3: 14.

Can-Ortiz A., Abot J.L., Aviles F. 2019. “Electrical characterization of carbon-based fibers and theirapplication for sensing relaxation induced piezoresistivity in polymer composites”. Carbon. 145: 119-130.

Zhang M., Atkinson K. R., Baughman R.H. 2004. “Multifunctional carbon nanotube yarns by downsizing anancient technology”. Science 306: 1358-61.

Lekawa-Raus A., Walczak K., Kozlowski G., Wozniak M., Hopkins S.C., Koziol K.K. 2015. ”Resistance-temperature dependence in carbon nanotube fibres”. Carbon. 84:118:123.

Aliev A.E., Guthy C., Zhang M., Fang S., Zakhidov A.A., Fischer J.E. Baughman R.H. 2007. “Thermaltransport in MWCNT sheets and yarns”. Carbon 45: 2880-2888.

Balam A., Cen-Puc M., Rodriguez-Uicab O., Abot J.L., Aviles F. 2020. “Cyclic thermoresistivity offreestanding and polymer embedded carbon nanotube yarns”. Adv. Eng. Mater. 22: 2000220.

Rodriguez-Uicab O., Abot J.L., Aviles F. 2020. “Electrical resistance sensing of epoxy curing using anembedded carbon nanotube yarn”. Sensors 20: 3220.

Rodriguez-Uicab O., Guay I., Abot J.L., Aviles F. 2021. “Effect of polymer viscosity and polymerizationkinetics on the electrical response of carbon nanotube yarn/vinyl ester monofilament composites”. Polymers13: 783.

Bogdanovich A.E., Bradford P.D. 2010. “Carbon nanotube yarn and 3-D braid composites. Part I: Tensiletesting and mechanical properties analysis”. Comp Part A 41: 230-237.

Abot J.L., Song Y., Vatsavaya M.S., Medikonda S., Kier Z., Jayasinghe C., Rooy N., Shanov V.N., SchulzM.J. 2010. “Delamination detection with carbon nanotube thread in self sensing composites materials”.Compos. Sci. Technol. 70: 1113-1119.

Li Q., Li Y., Zhang X., Chikkannanavar S. B., Zhao Y., Dangelewicz A.M., Zheng L., Doorn S.K., Jia Q.,Peterson D.E. 2007. “Structure-dependent electrical properties of carbon nanotube fibers”. Adv. Mater19:3358-3363.

Miaudet P., Bartholome C., Derre A., Maugey M., Sigaud G., Zakri C., Poulin P. 2007. “Thermo-electricalproperties of PVA-nanotube composites fibers”. Polymer 48:4068-4074.

Li C., Thostenson E.T., Chou T.-W. 2008. “Sensors and actuators based on carbon nanotubes and theircomposites: a review”. Compos. Sci. Technol. 68: 1227-1249.

Jin F. L., Li X., Park S.J. 2015. “Synthesis and applications of epoxy resins: a review”. J. Ind. Eng. Chem. 29: 1-11.

Jin F. L., Park S.J. 2008. “Thermomechanical behavior of epoxy resins modified with epoxidized vegetableoils”. Polym. Int. 57: 577-583.

B. Elis. 1993. Chemistry and technology of epoxy resins, Springer.

Kim R.W., Kim C.M., Hwang K.H., Kim S.R. 2019. “Embedded based real time monitoring in the highpressure resin transfer molding process for CFRP”. Appl. Sci. 9: 1795.

Rudawska A. 2019. “The impact of the seasoning conditions on mechanical properties of modified andunmodified epoxy adhesive compounds”. Polymers 11: 804.

Tucker S.J., Fu B., Kar S., Heinz S., Wiggins J.S. 2010 “Ambient cure POSS epoxy matrices for marinecomposites”. Comp. Part A 41: 1441-1446.

Barton J.M., Hamerton I., Howlin B.J., Jones J.R., Liu S. 1998. “Studies of cure schedule and final propertyrelationships of a commercial epoxy resin using modified imidazole curing agents”. Polymer. 39: 1929-1937.

Lambert C., Larroque M., Lebrun J.C., Gérard J.F. 1977. “Food contact epoxy resin: Co-variation betweenmigration and degree of cross linking”. Food Addit. Contam. 14: 199-208.

Niven J.F., Johnson M.B., Juckes S.M., White M.A., Alvarez N.T., Shanov V. 2016 “Influence of annealingon thermal and electrical properties of carbon nanotube yarns”. Carbon 99: 485-490.

Anike J.C., Belay K., Abot J.L. 2019 “Effect of twist on the electromechanical properties of carbon nanotubeyarns”. Carbon 142: 491-503.

Chang S.S. 1992. “Effect of curing history on ultimate glass transition temperature and network structure ofcrosslinking polymers”. Polymer 33: 4768-4778.

Meyer F., Sanz G., Eceiza A., Mondragon I., Mijovic J. 1995. “The effect of stoichiometry and thermal historyduring cure on structure and properties of epoxy networks”. Polymer. 36: 1407-1414.

Nysten B., Issi J.P., Barton Jr R., Boyington D. 1991. “Microstructure and negative magnetoresistance in pitchderived carbon fibres”. J. Phys. D. 24: 714-718.

Chung D.D.L. 2012. Carbon fiber composites. Elsevier, Newton: Butter-Heinemann.

Ebbesen T., Lezec H., Hiura H., Bennett J., Ghaemi H., Thio T. 1996. “Electrical conductivity of individualcarbon nanotubes”. Nature: 382:54.

Fernandez-Toribio J.C. Iniguez-Rabago A., Vila J., Gonzalez C., Ridruejo A., Vilatela J.J. 2016. “A compositefabrication sensor based on electrochemical doping of carbon nanotube yarns”. Adv. Funct. Mater. 16:7139-7147.

Sui X., Greenfeld I., Cohen H., Zhang X., Li Q., Wagner H.D., 2016. “Multilevel composite using carbonnanotube fibers (CNTF)”. Compos. Sci. Tech. 137: 35-43.

Qiu J., Terrones J., Vilatela J.J., Vickers M.E., Elliot J.A., Windle A.H., 2013. “Liquid infiltration into carbonnanotube fibers: effect on structure and electrical properties”. ACS Nano 7:8412-8422.

Gupta V., Brahatheeswaran C., 1991. “Molecular packing and free volume in crosslinked epoxy networks”.Polymer 32: 1875-1884.

Lascano D., Quiles–Carrillo L., Torres Giner S., Boronat T., Montanes N., 2019. “Optimization of the curingand post curing conditions for the manufacturing of partially bio-based epoxy resins with improvedtoughness”. Polymers 11:1354.


  • There are currently no refbacks.