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ABSTRACT

The butt-fusion joints of high-density polyethylene (HDPE) pipes represent a
critical vulnerability, being prone to various defects that potentially lead to structural
failures. Therefore, it is essential to conduct nondestructive testing (NDT) on HDPE
pipe butt-fusion joints for defect detection. This paper proposes a spatiotemporal
singular value decomposition filtering total focusing method (STSVD-TFM), combined
with machine learning (ML) to utilize A-scan signals for defect detection. Initially, the
signal data is filtered using the STSVD method. Subsequently, feature parameters,
including time domain features and spectral features, are extracted from the filtered data,
and significant features are selected based on the Relief-F algorithm. Finally, the filtered
signal data is employed for TFM imaging, with defect types determined by the training
results of the ML models applied to the feature parameters. Detection experiments are
conducted on HDPE pipe butt-fusion joint specimens, which included through-hole and
square groove defects. The results demonstrate that the proposed method effectively
reduces the amplitude of static clutter in the near-field areas, enhances the signal-to-
noise ratio (SNR) of the detection images, and achieves high accuracy autonomous
recognition of defect types.
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INTRODUCTION

High-density polyethylene (HDPE) pipes are increasingly applied in urban natural
gas pipeline due to their exceptional corrosion and oxidation resistance [1-2]. Butt-
fusion welding technology, eminent for its cost-effectiveness and high reliability, which
is one of the primary methods employed for welding HDPE pipes. Nevertheless, HDPE
pipe joints are susceptible to manufacturing defects arising from operational errors
during the welding process [3-4]. Such defects potentially lead to structural failures and
may cause unintentional natural gas leaks. Therefore, to ensure the integrity of HDPE
pipe butt-fusion joints, it is imperative to conduct nondestructive testing (NDT).

Phased array ultrasonic testing (PAUT), as an advanced NDT method, is widely
used for defect detection in industrial pipelines [5-6]. The total focusing method (TFM)
based on full matrix capture (FMC) technology has become the golden rule of post-
processing technology due to its superior image quality and signal-to-noise ratio (SNR)
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[7-8]. Due to the viscoelastic properties and low density of HDPE materials, ultrasonic
waves propagating within the material experience significant attenuation and absorption,
reducing the defect echo amplitude.

Singular value decomposition (SVD) has been justified to be effective for noise
reduction of ultrasonic signals in the NDT field [9-10]. SVD is processed on a 2D
Casorati matrix and filtered out the structural noise according to the singular vector
distribution. Additionaly, an advanced spatiotemporal singular value decomposition
(STSVD) method has been applied to the PAUT of HDPE materials. Rao etal [11] used
the STSVD method to filter the FMC ultrasonic 1/Q demodulated data of HDPE pipe
materials, which effectively suppresses the structural noise and improves the SNR.
Zhang et al [12] proposed an improved TFM algorithm based on STSVD, and the
average SNR could be improved by up to 5.48 dB with imaging detection experiments
of through-hole defects in HDPE test blocks.

The accuracy of PAUT for HDPE pipe butt-fusion joints often relies on manual
defect recognition, which is a time-consuming and error-prone process. Recent
advancements in artificial intelligence (Al) have enabled intelligent defect recognition
through analyzing extensive datasets [13-14]. Machine learning (ML), a significant
subset of Al, is integrated with PAUT to facilitate intelligent defect recognition by
developing a model structure [ 15-16]. ML encompasses shallow learning (SL) and deep
learning (DL). SL is characterized by its relatively simple model structure that can be
trained on ultrasonic signal feature data. In contrast, DL models, known for their
complex architectures, typically utilize large neural networks that are capable of
processing features in imaging tasks. However, acquiring defect imaging data is
challenging, and when using small datasets, image enhancement techniques are
frequently employed to augment the dataset [17-18]. It is important to note that
augmented defect images may cause overfitting and lead to significant errors from
overlearning specific defects.

In summary, to ensure the welding quality of HDPE pipe butt-fusion joints, this
paper proposes a spatiotemporal singular value decomposition filtering total focusing
method (STSVD-TFM). Combined with the ML models, the intelligent recognition of
defects is realized by conducting phased array ultrasonic detection experiments on
HDPE pipe butt-fusion joints specimens, and training the ultrasonic A-scan data of
FMC after STSVD filtering.

METHODS
SPATIOTEMPORAL SINGULAR VALUE DECOMPOSITION

The FMC matrix is converted into a 2D (N;x N;, Ns) Casorati matrix S, where ; and
N; represent the number of excitation and reception elements, respectively, and Ns
represent the number of sampling points. The Casorati matrix S using STSVD is as
follows [11]:
S=UAV’ (1)
Where, U represents the left singular vector of the matrix S. 1 represents a nonsquare
matrix whose diagonal elements are arranged in descending order as[al,az,---,o;],



and r is the rank of the matrix S; V represents the right singular vector of the matrix S.
Setting the low-order and high-order cutoff to reconstructed singular value matrices:
AT — Ax DT (2)
where, D7 represents a diagonal matrix consisting only of elements 0 and 1. The
STSVD inverse operation is then performed to obtain the filtered Casorati matrix S57:
SST U ASTV* (3)
Finally, the 2D Casorati matrix S5 is converted to a 3D matrix to obtain the
STSVD spatiotemporal filtered FMC data matrix.

TOTAL FOCUSING METHOD

The pixel amplitude /7ru(x,z) of any imaging point P(x,z) in a specified region of
interest (ROI) is [7]:

(4)

where, H represents the Hilbert transform of the FMC ultrasonic signal 4. x; and x;
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represent the positions of the excitation and reception array elements, respectively. 7

represents the time delay between the array element and the pixel point. When the
STSVD filtered FMC data A% is utilized for TFM imaging, the Iszsyp-7rm(x,z) amplitude
of the P(x,z) in the ROI grid is:
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DEFECT RECOGNITION METHOD BASED ON MACHINE LEARNING

The A-scan signals acquired by FMC are gated in the time domain to filter out both
front-wall and back-wall echoes, thereby preserving the integrity of the defect echo
signals. Subsequently, the feature parameters of the defective echo signals are extracted
from the time and frequency domains. The Relief-F algorithm, leveraging multiple
nearest neighbors for supervised classification. It evaluates feature differences between
similar and dissimilar neighbors for each sample and computes the weight ¥ for each
feature parameter [14]:

k=1
p(C )
Z 1— p(class(n)) 1=
C#class (1)
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where, / represents the feature data, /) represents the sample data. ,,, represents the kth

similar nearest neighbor of sample 1, diff represents the difference, Mi(C) represents the

kth dissimilar nearest neighbor of category C,and p represents the proportion.

This paper studies the recognition performance of three ML models: BP neural
network, random forest (RF), and support vector machine (SVM). The significant
feature parameters selected by the Relief-F algorithm are utilized as input data for
training data. A five-fold cross-validation strategy is employed to enhance the utilization



and reliability of the data. Additionally, the Bayesian optimizer is implemented to search
the optimal hyperparameters for each ML model, thereby reducing the likelihood of
overfitting and underfitting during model training.

EXPERIMENTS

In this study, defect detection experiments are conducted using HDPE pipe butt-
fusion joints specimens with an outer diameter with size of 315 mm and a thickness of
28.6 mm, as shown in Figure 1. The specimens contained through-hole defects of &
2mm, & 3mm and & 4mm, and square groove defects of 3mmx7.5mm and 4.5mmsx
9mm, respectively. Each type of defects included three samples, with defect depths of
10 mm, 16 mm, and 22 mm, respectively. The detection equipment utilizing 64 array
elements, the spacing and width of the array elements are 0.75 mm and 0.6 mm,
respectively. The center frequency of the transducer is 2.25 MHz, and the ultrasonic
speed is 2300 m/s.

Figure 1. HDPE hot melt joint test block: (a) Physical drawing, (b) Structural drawing.

RESULTS AND DISCUSSION
DEFECTS IMAGING DETECTION RESULTS

The imaging detection results are shown in Figure 2 and Figure 3, respectively. In
the TFM 1maging results, as illustrated in Figure 2(a) and 2(b), the 1# defects measuring
& 2mm and & 3mm are significantly affected by clutters in the near-field area. In
contrast, the 2# defects, being farther from the near-field area, exhibit elevated
amplitude. However, with increasing defect depth, the amplitude of the 3# defects are
reduced by the viscoelastic attenuation. In Figure 2(d) and (e), the expansion of the
reflection area of the square groove defects leads to the elevation of the noise amplitude
near the defects, and even false positive indications such as 15mm-18mm. In the
STSVD-TFM imaging results, the static clutter in the near-field area is effectively
suppressed and the amplitude is reduced by approximately from 10 dB to12 dB. In the
imaging results of the through-hole defects, as shown in Figures 3(a), (b) and (c), the
noise amplitude near the defects is lower than that of the TFM images. In the imaging
results of the square groove defects (Figures 3(d), (¢)), most of the noise near the defects



is suppressed, and the amplitude of the false-positive indications beneath the 1# defects
is reduced compared to the TFM images, although it is not completely eliminated.
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Figure 2. TFM imaging results: (a)z 2mm, (b)z 3mm, (¢) z4mm, (d) 3mmx 7.5mm, (e) 3mmx 7.5mm.
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Figure 3. STSVD-TFM imaging results: (a) 2mm, (b)z 3mm, (¢)  4mm, (d) 3mmx 7.5mm,
(e) 3mmx 7.5mm.

The SNR metric is utilized to quantitatively assess the imaging performance, and
the SNR is calculated as follows [10]:

SNR =20log,, Ilm— )

average



where, In. represents the maximum amplitude in the defective areas, and Iluverage
represents the average amplitude in the non-defective areas. The calculated average
SNR results are shown in Figure 4. It is evident that the average SNR of the STSVD-
TFM imaging results consistently exceeds that of the TFM imaging, with improvements
of up to 3.4 dB. This indicates the superior performance of STSVD-TFM imaging.
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Figure 4. Results of average SNR: #1 to #3 represent 2mm,  3mm and ; 4mm through-hole defects, #4
to #5 represent 3mm x 7.5mm and 4.5mmx 9mm square groove defects, respectively.

ML-BASED DEFECTS RECOGNITION

By manually setting the time gate on the FMC ultrasonic signals, the echoes from
both the front and back walls are effectively filtered out. The A-scan time-domain
waveforms for all defect types are presented in Figure 5. As the size of the defect
increases, the ultrasonic waves reflect over a larger range, resulting in higher signal
amplitude peaks and an increase in time sampling.
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Figure 5. The time domain A-scan echo signals: (a) filter out the front and back wall echoes, (b) A-scan
echoes of » 2mm and z 3mm through-hole defects, as well as 3mm x 7.5mm square groove defects.

The Relief-F algorithm is utilized to select the 12 significant features to be used as
the input data for the ML models. A-scan signals devoid of defects are excluded,



resulting in the creation of a feature data matrix with dimensions 13313« 12. The data
were normalized, with 80% of them are allocated for training and the remaining 20%
are designated as the test dataset. The ML models are trained using FMC and STSVD-
FMC data, respectively, and the performance reliability of each ML model is
quantitatively assessed using precision (P), recall (R), and F1 score, with the calculated
performance evaluation metrics are shown in Table L.

TABLE I. INDICATOR VALUES FOR PERFORMANCE EVALUATION OF EACH ML MODEL.

Models Dataset  Category P R F1 Macro P Wel%hted
1 00234 08462 09139
BPneural T MC 2 08806 09015 08920 00020 09020
network  STSVD- 1 09400 09063 09508
FMC 2 09362  0.9130 09304 09381 09437
1 09633 09684 09658
. FMC 2 09520 09445 09482 077 09588
STSVD- 1 09456 09669  0.9561
FMC 2 09484 09162 09302 00470 09467
1 09533 09724 09628
SUM FMC 2 09574 09286 09428 0904 09505
STSVD- 1 09723 09844 09783 o oo
FMC 2 09759 09575  0.9666 : :

Combining the performance metrics of the ML models for category 1 (through-hole
defects) and category 2 (square groove defects), it can be seen that the recognition
accuracy of through-hole defects is higher than that of square groove defects. Notably,
the accuracy is higher than the FMC data training results when using STSVD-FMC data.
Furthermore, the SVM model performs better compared to the other two methods, and
the micro-accuracy and weighted accuracy reached 0.9741 and 0.9737, respectively,
when trained on STSVD-FMC data.

CONCLUSION

In order to ensure the welding quality of HDPE pipe butt-fusion joints, this paper
proposes a TFM imaging algorithm based on STSVD filter processing and combines
the ML models to train the ultrasonic A-scan data for the intelligent recognition of
defects. Through imaging detection experiments on HDPE pipe butt-fusion joints, the
STSVD method effectively suppresses static clutter in the near-field area and noise near
the defects, resulting in an improvement of the SNR by up to 3.4 dB compared with the
TFM image. For intelligent recognition of defects, BP neural network, RF, and SVM
models are established to train FMC and STSVD-FMC feature data. The model
performance metrics indicate that the SVM model utilizing STSVD-FMC data has the
highest defect recognition rate, and the Macro P and Weighted P can reach 0.9741 and
0.9737, respectively.
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