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ABSTRACT 
 

The butt-fusion joints of high-density polyethylene (HDPE) pipes represent a 
critical vulnerability, being prone to various defects that potentially lead to structural 
failures. Therefore, it is essential to conduct nondestructive testing (NDT) on HDPE 
pipe butt-fusion joints for defect detection. This paper proposes a spatiotemporal 
singular value decomposition filtering total focusing method (STSVD-TFM), combined 
with machine learning (ML) to utilize A-scan signals for defect detection. Initially, the 
signal data is filtered using the STSVD method. Subsequently, feature parameters, 
including time domain features and spectral features, are extracted from the filtered data, 
and significant features are selected based on the Relief-F algorithm. Finally, the filtered 
signal data is employed for TFM imaging, with defect types determined by the training 
results of the ML models applied to the feature parameters. Detection experiments are 
conducted on HDPE pipe butt-fusion joint specimens, which included through-hole and 
square groove defects. The results demonstrate that the proposed method effectively 
reduces the amplitude of static clutter in the near-field areas, enhances the signal-to- 
noise ratio (SNR) of the detection images, and achieves high accuracy autonomous 
recognition of defect types. 

Key Words: high-density polyethylene, butt-fusion joints, phased array ultrasonic 
detection, total focusing method, machine learning 

 
 
INTRODUCTION 

High-density polyethylene (HDPE) pipes are increasingly applied in urban natural 
gas pipeline due to their exceptional corrosion and oxidation resistance [1-2]. Butt- 
fusion welding technology, eminent for its cost-effectiveness and high reliability, which 
is one of the primary methods employed for welding HDPE pipes. Nevertheless, HDPE 
pipe joints are susceptible to manufacturing defects arising from operational errors 
during the welding process [3-4]. Such defects potentially lead to structural failures and 
may cause unintentional natural gas leaks. Therefore, to ensure the integrity of HDPE 
pipe butt-fusion joints, it is imperative to conduct nondestructive testing (NDT). 

Phased array ultrasonic testing (PAUT), as an advanced NDT method, is widely 
used for defect detection in industrial pipelines [5-6]. The total focusing method (TFM) 
based on full matrix capture (FMC) technology has become the golden rule of post- 
processing technology due to its superior image quality and signal-to-noise ratio (SNR) 
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[7-8]. Due to the viscoelastic properties and low density of HDPE materials, ultrasonic 

waves propagating within the material experience significant attenuation and absorption, 

reducing the defect echo amplitude. 

Singular value decomposition (SVD) has been justified to be effective for noise 

reduction of ultrasonic signals in the NDT field [9-10]. SVD is processed on a 2D 

Casorati matrix and filtered out the structural noise according to the singular vector 

distribution. Additionaly, an advanced spatiotemporal singular value decomposition 

(STSVD) method has been applied to the PAUT of HDPE materials. Rao et al [11] used 

the STSVD method to filter the FMC ultrasonic 1/Q demodulated data of HDPE pipe 

materials, which effectively suppresses the structural noise and improves the SNR. 

Zhang et al [12] proposed an improved TFM algorithm based on STSVD, and the 

average SNR could be improved by up to 5.48 dB with imaging detection experiments 

of through-hole defects in HDPE test blocks. 

The accuracy of PAUT for HDPE pipe butt-fusion joints often relies on manual 

defect recognition, which is a time-consuming and error-prone process. Recent 

advancements in artificial intelligence (AI) have enabled intelligent defect recognition 

through analyzing extensive datasets [13-14]. Machine learning (ML), a significant 

subset of AI, is integrated with PAUT to facilitate intelligent defect recognition by 

developing a model structure [15-16]. ML encompasses shallow learning (SL) and deep 

learning (DL). SL is characterized by its relatively simple model structure that can be 

trained on ultrasonic signal feature data. In contrast, DL models, known for their 

complex architectures, typically utilize large neural networks that are capable of 

processing features in imaging tasks.  However, acquiring defect imaging data is 

challenging, and when using small datasets, image enhancement techniques are 

frequently employed to augment the dataset [17-18]. It is important to note that 

augmented defect images may cause overfitting and lead to significant errors from 

overlearning specific defects.  

In summary, to ensure the welding quality of HDPE pipe butt-fusion joints, this 

paper proposes a spatiotemporal singular value decomposition filtering total focusing 

method (STSVD-TFM). Combined with the ML models, the intelligent recognition of 

defects is realized by conducting phased array ultrasonic detection experiments on 

HDPE pipe butt-fusion joints specimens, and training the ultrasonic A-scan data of 

FMC after STSVD filtering. 

 

 

METHODS 

 

SPATIOTEMPORAL SINGULAR VALUE DECOMPOSITION 
 

The FMC matrix is converted into a 2D (NiNj, NS) Casorati matrix S, where Ni and 

Nj represent the number of excitation and reception elements, respectively, and NS 

represent the number of sampling points. The Casorati matrix S using STSVD is as 

follows [11]:  

*
S U V=   (1) 

Where, U represents the left singular vector of the matrix S.   represents a nonsquare 

matrix whose diagonal elements are arranged in descending order as 1 2, , , r   , 



and r is the rank of the matrix S; V represents the right singular vector of the matrix S. 

Setting the low-order and high-order cutoff to reconstructed singular value matrices: 

D
ST ST =   (2) 

where, DST represents a diagonal matrix consisting only of elements 0 and 1. The 

STSVD inverse operation is then performed to obtain the filtered Casorati matrix SST: 
*

S U V
ST ST=   (3) 

Finally, the 2D Casorati matrix SST is converted to a 3D matrix to obtain the 

STSVD spatiotemporal filtered FMC data matrix. 
 

 

TOTAL FOCUSING METHOD 
 

The pixel amplitude ITFM(x,z) of any imaging point P(x,z) in a specified region of 

interest (ROI) is [7]: 
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where, H represents the Hilbert transform of the FMC ultrasonic signal A. xt and xj 

represent the positions of the excitation and reception array elements, respectively. ij  

represents the time delay between the array element and the pixel point. When the 

STSVD filtered FMC data AST is utilized for TFM imaging, the ISTSVD-TFM(x,z) amplitude 

of the P(x,z) in the ROI grid is:  
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DEFECT RECOGNITION METHOD BASED ON MACHINE LEARNING 

 

The A-scan signals acquired by FMC are gated in the time domain to filter out both 

front-wall and back-wall echoes, thereby preserving the integrity of the defect echo 

signals. Subsequently, the feature parameters of the defective echo signals are extracted 

from the time and frequency domains. The Relief-F algorithm, leveraging multiple 

nearest neighbors for supervised classification. It evaluates feature differences between 

similar and dissimilar neighbors for each sample and computes the weight W for each 

feature parameter [14]:  
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where,   represents the feature data,   represents the sample data. 
k  represents the kth 

similar nearest neighbor of sample  , diff represents the difference, Mk(C) represents the 

kth dissimilar nearest neighbor of category C,and  p represents the proportion. 

This paper studies the recognition performance of three ML models: BP neural 

network, random forest (RF), and support vector machine (SVM). The significant 

feature parameters selected by the Relief-F algorithm are utilized as input data for 

training data. A five-fold cross-validation strategy is employed to enhance the utilization 



and reliability of the data. Additionally, the Bayesian optimizer is implemented to search 

the optimal hyperparameters for each ML model, thereby reducing the likelihood of 

overfitting and underfitting during model training. 
 

 

EXPERIMENTS 

 

In this study, defect detection experiments are conducted using HDPE pipe butt-

fusion joints specimens with an outer diameter with size of 315 mm and a thickness of 

28.6 mm, as shown in Figure 1. The specimens contained through-hole defects of 

2mm,  3mm and  4mm, and square groove defects of 3mm7.5mm and 4.5mm

9mm, respectively. Each type of defects included three samples, with defect depths of 

10 mm, 16 mm, and 22 mm, respectively. The detection equipment utilizing 64 array 

elements, the spacing and width of the array elements are 0.75 mm and 0.6 mm, 

respectively. The center frequency of the transducer is 2.25 MHz, and the ultrasonic 

speed is 2300 m/s. 

 

 
(a) (b) 

 

Figure 1. HDPE hot melt joint test block: (a) Physical drawing, (b) Structural drawing. 

 

 

RESULTS AND DISCUSSION 

 

DEFECTS IMAGING DETECTION RESULTS 

 

The imaging detection results are shown in Figure 2 and Figure 3, respectively. In 

the TFM imaging results, as illustrated in Figure 2(a) and 2(b), the 1# defects measuring 

 2mm and  3mm are significantly affected by clutters in the near-field area. In 

contrast, the 2# defects, being farther from the near-field area, exhibit elevated 

amplitude. However, with increasing defect depth, the amplitude of the 3# defects are 

reduced by the viscoelastic attenuation. In Figure 2(d) and (e), the expansion of the 

reflection area of the square groove defects leads to the elevation of the noise amplitude 

near the defects, and even false positive indications such as 15mm-18mm. In the 

STSVD-TFM imaging results, the static clutter in the near-field area is effectively 

suppressed and the amplitude is reduced by approximately from 10 dB to12 dB. In the 

imaging results of the through-hole defects, as shown in Figures 3(a), (b) and (c), the 

noise amplitude near the defects is lower than that of the TFM images. In the imaging 

results of the square groove defects (Figures 3(d), (e)), most of the noise near the defects 



is suppressed, and the amplitude of the false-positive indications beneath the 1# defects 

is reduced compared to the TFM images, although it is not completely eliminated. 

 

 

 
(a) (b) (c) 

 
(d)  (e)  

 

Figure 2. TFM imaging results: (a) 2mm, (b) 3mm, (c) 4mm, (d) 3mm 7.5mm, (e) 3mm 7.5mm. 

 

 
(a) (b) (c) 

 
(d)  (e)  

 

Figure 3. STSVD-TFM imaging results: (a) 2mm, (b) 3mm, (c) 4mm, (d) 3mm 7.5mm,  

(e) 3mm 7.5mm. 

 

 

The SNR metric is utilized to quantitatively assess the imaging performance, and 

the SNR is calculated as follows [10]: 

max
1020log

average

I
SNR

I
=  (7) 



where, Imax represents the maximum amplitude in the defective areas, and Iaverage 

represents the average amplitude in the non-defective areas. The calculated average 

SNR results are shown in Figure 4. It is evident that the average SNR of the STSVD-

TFM imaging results consistently exceeds that of the TFM imaging, with improvements 

of up to 3.4 dB. This indicates the superior performance of STSVD-TFM imaging. 
 

 

 
 

Figure 4. Results of average SNR: #1 to #3 represent 2mm, 3mm and 4mm through-hole defects, #4 

to #5 represent 3mm 7.5mm and 4.5mm 9mm square groove defects, respectively. 

 

 

ML-BASED DEFECTS RECOGNITION 

 

By manually setting the time gate on the FMC ultrasonic signals, the echoes from 

both the front and back walls are effectively filtered out. The A-scan time-domain 

waveforms for all defect types are presented in Figure 5. As the size of the defect 

increases, the ultrasonic waves reflect over a larger range, resulting in higher signal 

amplitude peaks and an increase in time sampling.  

 

 

 
(a)  (b)  

 

Figure 5. The time domain A-scan echo signals: (a) filter out the front and back wall echoes, (b) A-scan 

echoes of  2mm and 3mm through-hole defects, as well as 3mm 7.5mm square groove defects. 

 

 

The Relief-F algorithm is utilized to select the 12 significant features to be used as 

the input data for the ML models. A-scan signals devoid of defects are excluded, 



resulting in the creation of a feature data matrix with dimensions 1331312. The data 

were normalized, with 80% of them are allocated for training and the remaining 20% 

are designated as the test dataset. The ML models are trained using FMC and STSVD-

FMC data, respectively, and the performance reliability of each ML model is 

quantitatively assessed using precision (P), recall (R), and F1 score, with the calculated 

performance evaluation metrics are shown in Table I.  
 

 

TABLE I. INDICATOR VALUES FOR PERFORMANCE EVALUATION OF EACH ML MODEL. 

Models Dataset Category P R F1 Macro P 
Weighted 

P 

BP neural 

network 

FMC 
1 0.9234 0.8462 0.9139 

0.9020 0.9020 
2 0.8806 0.9015 0.8920 

STSVD-

FMC 

1 0.9400 0.9063 0.9508 
0.9381 0.9437 

2 0.9362 0..9130 0.9304 

RF 

FMC 
1 0.9633 0.9684 0.9658 

0.9577 0.9588 
2 0.9520 0.9445 0.9482 

STSVD-

FMC 

1 0.9456 0.9669 0.9561 
0.9470 0.9467 

2 0.9484 0.9162 0.9302 

SVM 

FMC 
1 0.9533 0.9724 0.9628 

0.9554 0.9505 
2 0.9574 0.9286 0.9428 

STSVD-

FMC 

1 0.9723 0.9844 0.9783 
0.9741 0.9737 

2 0.9759 0.9575 0.9666 

 

 

Combining the performance metrics of the ML models for category 1 (through-hole 

defects) and category 2 (square groove defects), it can be seen that the recognition 

accuracy of through-hole defects is higher than that of square groove defects. Notably, 

the accuracy is higher than the FMC data training results when using STSVD-FMC data. 

Furthermore, the SVM model performs better compared to the other two methods, and 

the micro-accuracy and weighted accuracy reached 0.9741 and 0.9737, respectively, 

when trained on STSVD-FMC data.  

 

 

CONCLUSION 

 

In order to ensure the welding quality of HDPE pipe butt-fusion joints, this paper 

proposes a TFM imaging algorithm based on STSVD filter processing and combines 

the ML models to train the ultrasonic A-scan data for the intelligent recognition of 

defects. Through imaging detection experiments on HDPE pipe butt-fusion joints, the 

STSVD method effectively suppresses static clutter in the near-field area and noise near 

the defects, resulting in an improvement of the SNR by up to 3.4 dB compared with the 

TFM image.  For intelligent recognition of defects, BP neural network, RF, and SVM 

models are established to train FMC and STSVD-FMC feature data. The model 

performance metrics indicate that the SVM model utilizing STSVD-FMC data has the 

highest defect recognition rate, and the Macro P and Weighted P can reach 0.9741 and 

0.9737, respectively.  
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