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ABSTRACT 
 

Highway pavement assets require intensive management due to their large scale 
and deteriorating nature. Traditional pavement management depends on inspections 
using dedicated sensors and vehicles, which are both infrequent and costly. Moreover, 
maintenance activities face unavoidable constraints because they rely on human labor. 
In this study, we explore the potential of automation in two key steps over the 
highway pavement management cycle: inspection and maintenance. First, we 
propose an automated pavement monitoring system that utilizes non-dedicated 
vehicle sensors, including accelerometers and dashcam cameras. Pavement condition 
data collected by dedicated inspection vehicles are utilized as ground truth for 
machine learning processes. Beyond assessing current conditions, we estimate 
pavement deterioration models using collected panel data. These models enable 
service life predictions and support optimal asset management strategies to minimize 
expected life cycle costs over long-term planning horizons. Second, we discuss the 
benefits of automated pavement maintenance technologies with AI applications, in 
the context of life cycle analysis. 

 
 

INTRODUCTION 
 

The management of highway pavement networks poses a significant challenge 
due to their continuous deterioration and the high costs of conventional monitoring 
and maintenance methods. Traditional Pavement Management Systems (PMS) rely 
on periodic inspections conducted by dedicated vehicles equipped with high- 
resolution cameras, 3D laser scanners, and other specialized sensors [1]. Although 
accurate, these systems are costly and labor-intensive, resulting in infrequent 
assessments that delay timely maintenance and accelerate pavement degradation [1]. 
Such delays can increase costs and shorten pavement service life. Moreover, manual 
maintenance operations raise concerns about worker safety, operational efficiency, 
and consistency. 
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To address these limitations, this study explores the potential of automation in 
two key steps of pavement management: inspection and maintenance. First, we 
propose an automated pavement management system that utilizes readily available 
sensors in non-dedicated vehicles—such as smartphone accelerometers and dashcam 
cameras—to collect vision-based distress data (e.g., cracks, potholes) and vibration-
based roughness information. Ground truth data from dedicated inspection vehicles 
are used to train machine learning (ML) models. These models assess current 
pavement conditions and estimate deterioration trends using panel data, thereby 
enabling service life prediction and informing optimal asset management strategies 
aimed at minimizing long-term life cycle costs. 

Second, we briefly discuss the application of automated pavement maintenance 
technologies, highlighting examples of advanced robotics and artificial intelligence 
(AI). From a life cycle analysis perspective, the integration of automation in both 
inspection and maintenance provides a pathway to proactive, efficient, and cost-
effective pavement management.  
 
 
RELATED WORK 
 
Limitations of Conventional Pavement Management 
 

Conventional pavement management has depended on scheduled inspections 
using dedicated vehicles equipped with specialized sensors. While effective, these 
inspections are costly and infrequent, limiting the ability to capture rapidly evolving 
pavement conditions. As a result, maintenance decisions are often reactive, 
implemented after substantial deterioration has occurred, which increases life cycle 
costs compared to proactive strategies. Additionally, manual maintenance processes 
are labor-intensive and face challenges related to safety, execution quality, and 
operational consistency. These limitations highlight the growing need for automated, 
data-driven approaches that can enhance the efficiency and responsiveness of 
pavement management. 
 
Advances in Sensor-Based Inspection and Deterioration Modeling 
 

Recent research has demonstrated the feasibility of using non-dedicated vehicle 
sensors to support pavement condition monitoring. Accelerometers and dashcam 
cameras embedded in consumer vehicles offer a scalable and low-cost alternative for 
collecting roughness and distress data across large networks [2]. Machine learning 
techniques, particularly deep learning, have shown strong performance in detecting 
surface defects and estimating roughness indicators such as IRI from these sensor 
inputs [2, 3]. Building on this, researchers are developing deterioration models based 
on panel data that enable long-term forecasting of pavement performance. These 
models are essential for estimating remaining service life and optimizing 
maintenance timing to reduce life cycle costs [3, 4]. The reliability of such models 
depends on consistent validation using ground truth data from professional inspection 
systems. 

 
 



Automation in Maintenance and Integrated Management Systems 
 

Alongside advances in inspection, automation in pavement maintenance is 
gaining momentum. Robotic systems designed for tasks such as crack sealing, 
pothole repair, and line marking are being developed and tested to improve safety, 
speed, and precision [5–7]. These systems often incorporate AI to support adaptive 
control and operational decision-making. The integration of automated inspection, 
deterioration modeling, and robotic maintenance forms the foundation of an 
automated pavement management system [4]. In such systems, continuous data 
streams feed into AI-based decision-support tools that assess current and projected 
pavement conditions, prioritize treatments, and coordinate robotic execution of 
maintenance tasks [8, 9]. This study contributes to this emerging paradigm by 
presenting an automated monitoring framework and discussing its potential within 
the context of life cycle–oriented pavement asset management. 

 
 

METHODOLOGY 
 
Data Collection 
 

Data were collected on a 27 km expressway section between Cheongju IC and 
Mokcheon IC in South Korea, encompassing both asphalt and concrete pavements. 
A smartphone mounted in a non-dedicated vehicle recorded road surface videos, z-
axis linear acceleration, vehicle speed, and GPS data (Figure 1). This methodology 
aligns with recent crowdsourcing-based pavement monitoring initiatives, facilitating 
scalable data collection under real-world driving conditions [5]. 
 
 

 
 

Figure 1. Experimental setup for collecting road surface video, acceleration, GPS location, and vehicle 
speed data using non-dedicated vehicle. 

 



Ground Truth Data 
 

Ground truth at 100-meter intervals, provided by the Korea Expressway 
Corporation, included pavement type, International Roughness Index (IRI), and 
Highway Pavement Condition Index (HPCI).  

Sensor data collected from the non-dedicated vehicle were precisely 
synchronized with this official ground truth data using GPS coordinates. IRI is a 
widely recognized standard measure of longitudinal road profile roughness. HPCI, a 
composite index developed by the Korea Expressway Corporation, integrates IRI, rut 
depth (RD), and surface distress (SD) to provide a comprehensive assessment of 
pavement health. The HPCI is calculated using type-specific formulations for asphalt 
pavements, as shown in Eq. (1) [10]: 

 
HPCI = 5 − 0.54×IRI0.8 − 0.75×RD1.2 − 0.9 × log(1 + SD),     (1) 

 
where, 
IRI = International Roughness Index [m/km], 
RD = Rut Depth [mm], and 
SD = Surface Distress [m2]. 
(The parameters multiplied by IRI, RD, and SD have specific units to ensure that all 
terms on the right-hand side of Eq. (1) are consistent with the units on the left-hand 
side.) 
 
Model Development 

 
For vision-based distress detection, YOLOv5x used with pre-trained weights 

from the RDD2022 (Road Damage Dataset), a large-scale dataset with 47,420 road 
surface images and over 55,000 distress instances from six countries [11]. The model 
was fine-tuned to identify and classify four primary distress types: longitudinal cracks, 
transverse cracks, alligator cracks, and potholes, achieving a mean Average Precision 
(mAP@0.5) of 0.647. 

For vibration data analysis, the Root Mean Square (RMS) of the z-axis linear 
acceleration and mean speed were computed for each 100-meter road segment. These 
values served as effective features for directly predicting IRI and HPCI. The outputs 
from the vision-based distress detection (e.g., detected distress counts per captured 
frames of each segment) and the vibration features were subsequently combined to 
form multi-input feature sets. Four machine learning models—Random Forest, 
XGBoost, LightGBM, and a Stacking ensemble—were trained using these integrated 
features to predict IRI and HPCI. 

 
 

RESULTS 
 

This section details the performance of the developed automated pavement 
condition assessment models in predicting IRI and HPCI. The analysis compares the 
efficacy of different sensor input configurations (vision-only, vibration-only, and 
integrated vision and vibration data) and examines the influence of data volume on 



model accuracy. Prediction performance was evaluated using the coefficient of 
determination (R²). 
 
IRI Prediction Performance 
 

For IRI prediction, models utilizing vibration data consistently outperformed 
those relying solely on vision data (Figure 2). This result aligns with the nature of 
IRI, which directly reflects longitudinal road roughness and correlates strongly with 
vehicle-induced vibrations [3]. Model performance improved as the dataset size 
increased, underscoring the value of continuous data accumulation for generalization.  

While vision data alone offered limited predictive value for IRI, integrating vision 
and vibration features substantially improved accuracy. The Stacking ensemble 
model achieved the highest performance, demonstrating the effectiveness of 
multimodal sensing for robust roughness estimation. 
 
 

 
 

Figure 2. IRI prediction performance of four machine learning models (Random Forest, XGBoost, 
LightGBM, and Stacking) using (a) vision-only, (b) vibration-only, and (c) multimodal inputs. 

 
 

 
 

Figure 3. HPCI prediction performance of four machine learning models (Random Forest, XGBoost, 
LightGBM, and Stacking) using (a) vision-only, (b) vibration-only, and (c) multimodal inputs. 
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HPCI Prediction Performance 
 

In HPCI prediction, the overall R2 values were generally lower than those 
achieved for IRI (Figure 3). However, the contribution of vision-based features was 
significantly greater in this case, due to HPCI’s inclusion of SD components that are 
visually detectable. As with IRI, multi-sensor integration improved prediction 
accuracy, with the Stacking model again outperforming individual models. These 
results confirm the effectiveness of sensor fusion for predicting composite indices 
and highlight the distinct role of visual information in evaluating surface-level 
degradation. 

 
Implications for Deterioration Modeling and Lifecycle Optimization 

 
Across both indices, a positive correlation between data accumulation and 

predictive accuracy was consistently observed. This trend supports the scalability of 
the proposed automated inspection framework. Longitudinal panel data derived from 
repeated sensing can inform deterioration modeling by capturing dynamic changes 
over time. Accurate forecasts of condition trajectories and service life enable 
highway agencies to prioritize interventions and optimize treatment timing. This 
predictive capability is central to minimizing lifecycle costs, transitioning from 
reactive to preventive maintenance planning. Ultimately, continuous sensing from 
non-dedicated vehicles facilitates data-driven decision-making that supports long-
term asset sustainability. 
 
 
DISCUSSION: AUTOMATED PAVEMENT MANAGEMENT SYSTEMS 
 

Modernizing pavement asset management requires automating both inspection 
and maintenance processes. Central to this vision is the development of an 
“autonomous condition monitoring-based pavement management system” [4], in 
which data from continuous automated monitoring are used to trigger timely, precise, 
and robotic maintenance interventions. 

Within this framework, AI functions as the system’s decision-making engine. It 
not only processes condition data and trains deterioration models but also integrates  
external variables, such as traffic conditions, weather forecasts, and budget 
constraints, to optimize maintenance timing and resource allocation as described in 
Figure 4. 

From a lifecycle perspective, these integrated technologies offer multi-
dimensional benefits: reduced labor dependency for frequent on-site inspection, 
improved operational precision by more accurate understanding of current and future 
pavement condition, and, ultimately, prolonged pavement service life. 

Automation technologies can be applied not only to inspection but also to MR&R 
(Maintenance, Repair, and Rehabilitation) activities. Several companies have already 
developed AI-robot-based pavement repair methods (e.g., Robotiz3d’s ARRES 
PREVENT [12], RovoRoad’s pothole repair robot [13]), which can enhance the 
economic efficiency of pavement management systems by reducing labor 
dependency and enabling operation during off-peak hours or in challenging 
environments.  



 
 

Figure 4. Concept of Automated Pavement Management Systems using real-time monitoring based 
on AI functions, cited from [4]. 

 
 
CONCLUSION 
 

This study explored the feasibility of an autonomous pavement management 
system that integrates automated inspection using non-dedicated vehicle sensors with 
robotic maintenance technologies. By combining vision and vibration data with 
machine learning, the proposed framework enables continuous and scalable 
assessment of pavement conditions. The findings highlight that vibration features are 
essential for accurate IRI prediction, while vision data enhance HPCI estimation. 
Multimodal data fusion and increased training data further improve model robustness 
and reliability. AI-enabled robotic maintenance systems support precise, efficient, 
and safe pavement repairs, contributing to more sustainable and cost-effective asset 
management.  

Future work will focus on strengthening model generalization, developing 
predictive maintenance strategies, conducting life cycle cost-benefit analyses, and 
exploring advanced robotic applications like crack filling and surface treatments. 
These advancements provide a clear pathway toward intelligent, adaptive, and fully 
autonomous pavement asset management. Collectively, these efforts will accelerate 
the transition to intelligent, adaptive, and fully autonomous pavement asset 
management. 
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