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ABSTRACT

Highway pavement assets require intensive management due to their large scale
and deteriorating nature. Traditional pavement management depends on inspections
using dedicated sensors and vehicles, which are both infrequent and costly. Moreover,
maintenance activities face unavoidable constraints because they rely on human labor.
In this study, we explore the potential of automation in two key steps over the
highway pavement management cycle: inspection and maintenance. First, we
propose an automated pavement monitoring system that utilizes non-dedicated
vehicle sensors, including accelerometers and dashcam cameras. Pavement condition
data collected by dedicated inspection vehicles are utilized as ground truth for
machine learning processes. Beyond assessing current conditions, we estimate
pavement deterioration models using collected panel data. These models enable
service life predictions and support optimal asset management strategies to minimize
expected life cycle costs over long-term planning horizons. Second, we discuss the
benefits of automated pavement maintenance technologies with Al applications, in
the context of life cycle analysis.

INTRODUCTION

The management of highway pavement networks poses a significant challenge
due to their continuous deterioration and the high costs of conventional monitoring
and maintenance methods. Traditional Pavement Management Systems (PMS) rely
on periodic inspections conducted by dedicated vehicles equipped with high-
resolution cameras, 3D laser scanners, and other specialized sensors [1]. Although
accurate, these systems are costly and labor-intensive, resulting in infrequent
assessments that delay timely maintenance and accelerate pavement degradation [1].
Such delays can increase costs and shorten pavement service life. Moreover, manual
maintenance operations raise concerns about worker safety, operational efficiency,
and consistency.
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To address these limitations, this study explores the potential of automation in
two key steps of pavement management: inspection and maintenance. First, we
propose an automated pavement management system that utilizes readily available
sensors in non-dedicated vehicles—such as smartphone accelerometers and dashcam
cameras—to collect vision-based distress data (e.g., cracks, potholes) and vibration-
based roughness information. Ground truth data from dedicated inspection vehicles
are used to train machine learning (ML) models. These models assess current
pavement conditions and estimate deterioration trends using panel data, thereby
enabling service life prediction and informing optimal asset management strategies
aimed at minimizing long-term life cycle costs.

Second, we briefly discuss the application of automated pavement maintenance
technologies, highlighting examples of advanced robotics and artificial intelligence
(AI). From a life cycle analysis perspective, the integration of automation in both
inspection and maintenance provides a pathway to proactive, efficient, and cost-
effective pavement management.

RELATED WORK
Limitations of Conventional Pavement Management

Conventional pavement management has depended on scheduled inspections
using dedicated vehicles equipped with specialized sensors. While effective, these
inspections are costly and infrequent, limiting the ability to capture rapidly evolving
pavement conditions. As a result, maintenance decisions are often reactive,
implemented after substantial deterioration has occurred, which increases life cycle
costs compared to proactive strategies. Additionally, manual maintenance processes
are labor-intensive and face challenges related to safety, execution quality, and
operational consistency. These limitations highlight the growing need for automated,
data-driven approaches that can enhance the efficiency and responsiveness of
pavement management.

Advances in Sensor-Based Inspection and Deterioration Modeling

Recent research has demonstrated the feasibility of using non-dedicated vehicle
sensors to support pavement condition monitoring. Accelerometers and dashcam
cameras embedded in consumer vehicles offer a scalable and low-cost alternative for
collecting roughness and distress data across large networks [2]. Machine learning
techniques, particularly deep learning, have shown strong performance in detecting
surface defects and estimating roughness indicators such as IRI from these sensor
inputs [2, 3]. Building on this, researchers are developing deterioration models based
on panel data that enable long-term forecasting of pavement performance. These
models are essential for estimating remaining service life and optimizing
maintenance timing to reduce life cycle costs [3, 4]. The reliability of such models
depends on consistent validation using ground truth data from professional inspection
systems.



Automation in Maintenance and Integrated Management Systems

Alongside advances in inspection, automation in pavement maintenance is
gaining momentum. Robotic systems designed for tasks such as crack sealing,
pothole repair, and line marking are being developed and tested to improve safety,
speed, and precision [5—7]. These systems often incorporate Al to support adaptive
control and operational decision-making. The integration of automated inspection,
deterioration modeling, and robotic maintenance forms the foundation of an
automated pavement management system [4]. In such systems, continuous data
streams feed into Al-based decision-support tools that assess current and projected
pavement conditions, prioritize treatments, and coordinate robotic execution of
maintenance tasks [8, 9]. This study contributes to this emerging paradigm by
presenting an automated monitoring framework and discussing its potential within
the context of life cycle—oriented pavement asset management.

METHODOLOGY
Data Collection

Data were collected on a 27 km expressway section between Cheongju IC and
Mokcheon IC in South Korea, encompassing both asphalt and concrete pavements.
A smartphone mounted in a non-dedicated vehicle recorded road surface videos, z-
axis linear acceleration, vehicle speed, and GPS data (Figure 1). This methodology
aligns with recent crowdsourcing-based pavement monitoring initiatives, facilitating
scalable data collection under real-world driving conditions [5].
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Figure 1. Experimental setup for collecting road surface video, acceleration, GPS location, and vehicle
speed data using non-dedicated vehicle.



Ground Truth Data

Ground truth at 100-meter intervals, provided by the Korea Expressway
Corporation, included pavement type, International Roughness Index (IRI), and
Highway Pavement Condition Index (HPCI).

Sensor data collected from the non-dedicated vehicle were precisely
synchronized with this official ground truth data using GPS coordinates. IRI is a
widely recognized standard measure of longitudinal road profile roughness. HPCI, a
composite index developed by the Korea Expressway Corporation, integrates IRI, rut
depth (RD), and surface distress (SD) to provide a comprehensive assessment of
pavement health. The HPCI is calculated using type-specific formulations for asphalt
pavements, as shown in Eq. (1) [10]:

HPCI =5 — 0.54<IRI*® — 0.75xRD"? — 0.9 x log(1 + SD), (1)

where,

IRI = International Roughness Index [m/km],

RD = Rut Depth [mm], and

SD = Surface Distress [m?].

(The parameters multiplied by /RI, RD, and SD have specific units to ensure that all
terms on the right-hand side of Eq. (1) are consistent with the units on the left-hand
side.)

Model Development

For vision-based distress detection, YOLOvV5x used with pre-trained weights
from the RDD2022 (Road Damage Dataset), a large-scale dataset with 47,420 road
surface images and over 55,000 distress instances from six countries [11]. The model
was fine-tuned to identify and classify four primary distress types: longitudinal cracks,
transverse cracks, alligator cracks, and potholes, achieving a mean Average Precision
(mAP@0.5) of 0.647.

For vibration data analysis, the Root Mean Square (RMS) of the z-axis linear
acceleration and mean speed were computed for each 100-meter road segment. These
values served as effective features for directly predicting IRI and HPCI. The outputs
from the vision-based distress detection (e.g., detected distress counts per captured
frames of each segment) and the vibration features were subsequently combined to
form multi-input feature sets. Four machine learning models—Random Forest,
XGBoost, LightGBM, and a Stacking ensemble—were trained using these integrated
features to predict IRI and HPCI.

RESULTS

This section details the performance of the developed automated pavement
condition assessment models in predicting IRI and HPCI. The analysis compares the
efficacy of different sensor input configurations (vision-only, vibration-only, and
integrated vision and vibration data) and examines the influence of data volume on



model accuracy. Prediction performance was evaluated using the coefficient of
determination (R?).

IRI Prediction Performance

For IRI prediction, models utilizing vibration data consistently outperformed
those relying solely on vision data (Figure 2). This result aligns with the nature of
IRI, which directly reflects longitudinal road roughness and correlates strongly with
vehicle-induced vibrations [3]. Model performance improved as the dataset size
increased, underscoring the value of continuous data accumulation for generalization.

While vision data alone offered limited predictive value for IRI, integrating vision
and vibration features substantially improved accuracy. The Stacking ensemble
model achieved the highest performance, demonstrating the effectiveness of
multimodal sensing for robust roughness estimation.
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Figure 2. IRI prediction performance of four machine learning models (Random Forest, XGBoost,
LightGBM, and Stacking) using (a) vision-only, (b) vibration-only, and (c) multimodal inputs.
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Figure 3. HPCI prediction performance of four machine learning models (Random Forest, XGBoost,
LightGBM, and Stacking) using (a) vision-only, (b) vibration-only, and (c) multimodal inputs.



HPCI Prediction Performance

In HPCI prediction, the overall R? values were generally lower than those
achieved for IRI (Figure 3). However, the contribution of vision-based features was
significantly greater in this case, due to HPCI’s inclusion of SD components that are
visually detectable. As with IRI, multi-sensor integration improved prediction
accuracy, with the Stacking model again outperforming individual models. These
results confirm the effectiveness of sensor fusion for predicting composite indices
and highlight the distinct role of visual information in evaluating surface-level
degradation.

Implications for Deterioration Modeling and Lifecycle Optimization

Across both indices, a positive correlation between data accumulation and
predictive accuracy was consistently observed. This trend supports the scalability of
the proposed automated inspection framework. Longitudinal panel data derived from
repeated sensing can inform deterioration modeling by capturing dynamic changes
over time. Accurate forecasts of condition trajectories and service life enable
highway agencies to prioritize interventions and optimize treatment timing. This
predictive capability is central to minimizing lifecycle costs, transitioning from
reactive to preventive maintenance planning. Ultimately, continuous sensing from
non-dedicated vehicles facilitates data-driven decision-making that supports long-
term asset sustainability.

DISCUSSION: AUTOMATED PAVEMENT MANAGEMENT SYSTEMS

Modernizing pavement asset management requires automating both inspection
and maintenance processes. Central to this vision is the development of an
“autonomous condition monitoring-based pavement management system” [4], in
which data from continuous automated monitoring are used to trigger timely, precise,
and robotic maintenance interventions.

Within this framework, Al functions as the system’s decision-making engine. It
not only processes condition data and trains deterioration models but also integrates
external variables, such as traffic conditions, weather forecasts, and budget
constraints, to optimize maintenance timing and resource allocation as described in
Figure 4.

From a lifecycle perspective, these integrated technologies offer multi-
dimensional benefits: reduced labor dependency for frequent on-site inspection,
improved operational precision by more accurate understanding of current and future
pavement condition, and, ultimately, prolonged pavement service life.

Automation technologies can be applied not only to inspection but also to MR&R
(Maintenance, Repair, and Rehabilitation) activities. Several companies have already
developed Al-robot-based pavement repair methods (e.g., Robotiz3d’s ARRES
PREVENT [12], RovoRoad’s pothole repair robot [13]), which can enhance the
economic efficiency of pavement management systems by reducing labor
dependency and enabling operation during off-peak hours or in challenging
environments.
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Figure 4. Concept of Automated Pavement Management Systems using real-time monitoring based
on Al functions, cited from [4].

CONCLUSION

This study explored the feasibility of an autonomous pavement management
system that integrates automated inspection using non-dedicated vehicle sensors with
robotic maintenance technologies. By combining vision and vibration data with
machine learning, the proposed framework enables continuous and scalable
assessment of pavement conditions. The findings highlight that vibration features are
essential for accurate IRI prediction, while vision data enhance HPCI estimation.
Multimodal data fusion and increased training data further improve model robustness
and reliability. Al-enabled robotic maintenance systems support precise, efficient,
and safe pavement repairs, contributing to more sustainable and cost-effective asset
management.

Future work will focus on strengthening model generalization, developing
predictive maintenance strategies, conducting life cycle cost-benefit analyses, and
exploring advanced robotic applications like crack filling and surface treatments.
These advancements provide a clear pathway toward intelligent, adaptive, and fully
autonomous pavement asset management. Collectively, these efforts will accelerate
the transition to intelligent, adaptive, and fully autonomous pavement asset
management.
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