
Machine-Learning Based Fault Diagnosis 
for a Rotordynamic System Using 
Multibody Simulations 
 

YU-HUNG PAI, PETRI T. PIIROINEN, SHIVESH KUMAR 
and HAKAN JOHANSSON 

 
ABSTRACT 

Machine-learning based fault diagnosis plays an important role in condition moni- 
toring for rotating machinery to prevent systems from catastrophic faults. It is important 
to note that the performance of data-driven methods relies highly on a large quantity of 
training fault data. Since rotating machinery operates under normal condition most of 
the time, collecting sufficient fault data from experiments takes a huge amount of time 
and expense, and under various operating conditions. To overcome the fault data insuffi- 
ciency, building a virtual testbed for generating fault data is a promising way in bridging 
the gap between data requirement and prediction accuracy. 

Many simplified dynamic models have been proposed to generate a single fault on 
some rotordynamic systems. These methods, however, cannot reflect complex operation 
conditions such as variant rotation speed or multi-faults. To better reveal vibration re- 
sponses of local defects, this research aims to establish a multibody dynamics (MBD) 
model that can simultaneously analyze complete dynamic behavior and simulate a wider 
range of fault scenarios. 

In this research, a simulation-driven fault diagnosis method is proposed to generate 
the simulation fault data. Firstly, a rigid-flexible hybrid model of a single-rotor-bearing 
system is established using MSC ADAMS, which is based on MBD and finite element 
analysis. Different fault conditions are simulated including outer race bearing faults, 
inner race bearing faults, and rolling element faults. After generating fault data, a time- 
frequency feature extraction method is developed based on Hilbert envelope and wavelet 
packet decomposition, extracting a large amount of features from the original signals. In 
addition, an autoencoder model is built to highlight the critical features, enhancing the 
performance of the classifier. This feature extraction is made to obtain fault-related fea- 
tures, which train the machine learning classifiers for discriminating the fault categories. 
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To validate the simulation results, the Case Western Reserve University (CWRU)
bearing dataset that has been widely accepted as a standard reference is introduced. A
comparison of bearing fault frequencies between simulations and the CWRU dataset is
then conducted. Meanwhile, a transfer learning method is applied using the CWRU
dataset to fine tune the fault diagnosis classifier. This research lays a solid foundation
for future development of a digital twin and simulation-driven transfer learning for fault
diagnosis of rotating machines.

INTRODUCTION

Rotordynamic system, a key component in most industrial sectors, is prone to various
defects during operations such as bearing faults, misalignment and unbalance. When a
local fault grows to a critical level, it often leads to a long downtime, and in severe cases
causing damage to the entire machine. Therefore, accurately diagnosing faults at an
early stage is necessary for rotating machines.

Machine-learning-based fault diagnosis integrating traditional signal processing and
machine learning methods serves as a predictive maintenance technique to identify the
anomalies from monitoring data. However, a major obstacle in developing machine-
learning models for rotating machines is the insufficiency of fault data [1]. Since most
rotating machines operate under normal conditions for most of their lifespan, it is chal-
lenging to obtain sufficient fault data from physical systems. To solve the problem with
missing fault samples, building a virtual counterpart of a rotating machinery plays an
important role to generate various simulated fault data.

To generate fault signals, many simplified bearing models have been proposed [2]
[3]. However, these models often fail to reflect the complete dynamic behavior of the
rotating system and are limited in replicating certain fault types-particularly faults on
rolling elements, which have been rarely discussed in the previous research. To over-
come these limitations, multi-body dynamics (MBD) simulations are used in this work
to reveal the realistic operating conditions and to model a wider range of fault scenarios
in rotating machines. Recent work by [4] has demonstrated the effectiveness of opti-
mal MBD simulations in condition monitoring, highlighting their potential for broader
applications.

This work aims to develop a simulation-data-driven method to tackle the insuffi-
ciency of fault data in condition monitoring of rotordynamic system. First, a tunable
simulation for the rotor-bearing system is developed to generate different bearing fault
data. Second, several feature extraction techniques is presented to capture the fault-
related features, which are used to build the fault diagnosis classifier. Third, the ex-
perimental datasets is used to validate the MBD model and fine tune the classifier. By
combining simulation data and experimental data, the transfer-learning method bridges
the gap between a virtual system and a real machine.

The proposed framework allows simulation data to build a fault diagnosis pre-trained
classifier and only require a small portion of real data to fine tune the classifier, reinforc-
ing the performance and increasing robustness of condition monitoring systems.



FRAMEWORK OF TRANSFER LEARNING METHOD

The typical transfer learning approach involves initially constructing a pre-trained
model using data from a source domain, followed by refining this model with data from
a target domain. The framework in this study is depicted in the Figure 1. Here, the
source domain comprises simulated bearing fault data from the multibody dynamics
(MBD) model, whereas the target domain contains experimental bearing data from the
Case Western Reserve University (CWRU) dataset [5]. Initially, feature extraction tech-
niques are applied to the source domain to effectively capture fault-related features while
preserving their physical interpretations. After implementing signal processing methods
and an autoencoder neural network to highlight these fault-related features, a pre-trained
classifier is established based on the extracted source domain features. Subsequently,
the parameters of the feature extraction process are frozen, and the classifier parameters
are fine-tuned using the target domain dataset, allowing the model to adapt effectively to
real data and improving its classification accuracy.

Figure 1. Framework of the proposed fault diagnosis method.

MULTIBODY DYNAMICS SIMULATION

In this work, the single-rotor-bearing model is built using the MBD analysis software,
MSC ADAMS [6]. For a rigid-flexible hybrid MBD system, the equations of motion is
described in the following general form [4]:{

Mq̈ + ΦT
q λ+ Fq = Q(q)

Φ(q, t) = 0
(1)

where M is the system mass matrix, Φq is the derivative matrix of constraint equations
with respect to the system generalized coordinates q, λ is the vector of Lagrangian multi-
pliers associated with the constraints, F (q) is the system elastic force vector, Q(q) is the
system external generalized forces, Φ(q, t) is the vector containing the system constraint
equations and t is the time. The dynamic behaviors of each component can be calculated
at each moment under the forces and torques applied.
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Figure 2. The single-rotor-bearing MBD model.

Figure 3. (left) Fault on the outer ring; (middle) fault on the inner ring and (right) fault
on the ball.

This model comprises a motor, a shaft, a ball bearing, a bearing housing and a disk as
shown in Figure 2. The shaft is modelled as a flexible body, while other components are
simulated as rigid bodies. Initially, allowing the simulation to be validated by the CWRU
dataset, the SKF 6205-2RS deep groove ball bearing is chosen. The bearing faults are
shown in Figure 3. In this bearing model, the 3D CAD geometry of the bearing is
obtained from the SKF official website [7]. Since the roller elements from the CAD
file are unified as one rigid body, they are replaced with the sphere bodies in MSC
ADAMS that can be tuned separately. The bearing model contains 18 contacts, 9 of
which are defined between the roller elements and the inner race and 9 of which are
defined between the roller elements and the outer race. The parameters of the contacts
are demonstrated in [8]. All the intervals of adjacent rolling elements are confined, and
the rolling elements can only rotate along with the longitudinal axis during rotation.
Subsequently, the shaft is connected to the motor, the inner race of the bearing and
the disk, allowing the rotation around the longitudinal axis and the radial translation
confined by the bearing. The outer race of the bearing is fixed on the bearing housing,
and the constrains between the housing and the ground are 3 rotational and 3 translational
springs. Vertical acceleration responses are measured from the bearing housing to enable
comparison with the CWRU dataset.

METHODS OF FAULT DIAGNOSIS

Based on the geometry parameters and rotating speed of the bearing, the bearing
fault frequencies associated with the inner race, outer race and rolling element are ball
passing frequency of inner race (BPFI), ball passing frequency of outer race (BPFO),
and ball spin frequency (BSF). The theoretical fault frequencies are defined as follows:
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where n is the number of the rolling elements, fr is the rotating speed of the inner ring,
d is the diameter of the rolling elements, D is the pitch diameter of the bearing and α is
the contact angle.

The procedure for feature extraction is illustrated in Figure 4, which aims to identify
and isolate fault-related characteristics within various frequency bands. Both bearing-
fault and healthy data are generated from MBD model. Ensemble Empirical Mode De-
composition (EEMD) is applied for signal denoising, with the first intrinsic mode func-
tion (IMF) being selected for further analysis [9]. Subsequently, the Hilbert envelope
method is used to demodulate the signals and to extract the fault frequencies and their
harmonics. Even though the simulated acceleration signals do not perfectly replicate the
CWRU dataset, their envelope spectrums consistently exhibit similar patterns of fault
frequencies [1]. Next, wavelet packet decomposition (WPD) decomposes the envelope
signals into different frequency bands, allowing computation of the energy distribution
and root means square values across all bands [10]. These extracted features indicate that
notably higher energy responses in frequency bands associate with fault frequencies. Fi-
nally, the extracted features are processed through an autoencoder neural network to
identify critical features, which are then used to train a classifier capable of effectively
distinguishing among various fault conditions.

Figure 4. Procedure of feature extraction.

DISCUSSION AND COMPARISON

The rotating speed and sampling rate in the MBD model are set to 1797 rpm and
12000 Hz respectively, which are identical to the CWRU setup. Each case is simulated
for 19 s, with data sampled every 0.5 s, leading to 152 (38 · 4) samples in total. In
contrast, each case in the CWRU dataset spans 10 s and is sampled at the same 0.5 s,
resulting in 80 (20 · 4) samples in total. Figure 5 presents a comparison of the enve-
lope spectrums between the simulated data and the CWRU data for different bearing
faults. Although the numerical model introduces additional noise, the MBD model still
successfully captures the characteristic fault frequencies. TABLE I demonstrates that



Figure 5. (left (a)(c)(e)) Envelope spectrums from simulated dataset and (right (b)(d)(f))
envelope spectrums from CWRU dataset.

TABLE I. Comparison of the fault frequencies
MBD model (Hz) CWRU dataset (Hz) Theoretical frequency (Hz)

BPFI 166 162 162.18
BPFO 105 108 107.36
BSF 138 140 141.17

the errors between the MBD model and the theoretical frequencies are all within 2.3%,
highlighting the accuracy of the proposed MBD model.

In the transfer learning part, the simulated dataset is divided into two datasets, 50%
for training and 50% for testing to develop the initial pre-trained classifier. Similarly, the
CWRU dataset is divided into two datasets, 33% for classifier fine-tuning and 67% for
testing the fine-tuned classifier. Figure 6 (left) shows that the classifier cannot distinguish
between BPFO and BSF and also misidentifies a part of healthy samples as fault samples,
leading to a relatively low classification accuracy of 74.26 %. This result indicates that
the gap between the simulated data and the experimental data is still large. However,
after the fine-tuning process using the CWRU data, the results demonstrate a substantial
improvement in fault diagnosis, achieving an accuracy up to 98.15%, as shown in Figure
6 (right). This significant change clearly shows the classifier successfully adapts to the
experimental dataset.

CONCLUDING REMARKS

This work aims to enrich the field of study for condition monitoring using MBD
simulation as the source of training data for fault diagnosis. A MBD model is first built
and validated by the CWRU bearing dataset, successfully capturing the bearing fault
frequencies. The flexibility of the MBD model in simulating diverse conditions and



Figure 6. (left) Classification results before transfer learning and (right) classification
results after transfer learning.

capturing realistic dynamic responses makes it a promising tool for advancing multi-
fault diagnosis in future research.

To overcome the challenge of limited fault training data, a transfer learning strat-
egy is presented, indicating a strong potential for enhancing model generalization. By
fine-tuning the pre-trained classifier with a small portion of real data, the classifica-
tion accuracy is significantly improved from 74.26% to 98.15%. This work lays a solid
foundation for the integration of digital twin systems and transfer learning methods in
advanced condition monitoring and structural health monitoring applications.
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