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ABSTRACT

Corrosion is a serious concern for structural integrity since it can lead to prema-
ture structural failures. Nevertheless, its monitoring is particularly challenging due to
inherent features of the corrosion process: it is strongly dependent on environmental
conditions, materials used, and their coupling. Generalised corrosion phenomena are
visible at visual inspection and lead to a reduction of the resistant thickness of compo-
nents and structures. Instead, localised corrosion results in visually difficult-to-detect
damages that can lead to fatigue cracks. In addition, these two corrosion types are not
mutually exclusive: a component may present corrosion pits even if it is macroscopically
subjected to generalised corrosion. However, a probability-based relationship between
generalised corrosion evolution and corrosion pits’ presence and geometrical features
is missing. Therefore, it is important to monitor generalised corrosion phenomena to
assess the structural integrity of structures and components given the reduction in their
resistant section and the possible presence of corrosion pits. Within this context, this
study presents a methodology for corrosion-based structural assessment by integrating
image-based corrosion diagnosis, measurements of environmental and corrosion rate re-
lated parameters, and a filtering technique to perform corrosion diagnosis and prognosis.
The image-based corrosion diagnosis relies on a Convolutional Neural Network (CNN)
that has been trained to automatically perform semantic segmentation on images of a
corroded helicopter component. In this way, it is possible to have discrete-in-time ob-
servations of the actual corrosion level of the component when the helicopter is not on
missions. The implemented CNN is not only able to distinguish between corroded and
uncorroded regions but also between two different corroded regions of interest due to
different materials. The CNN was trained with manually segmented images from which
corrosion indexes have been extracted. The latter have been related to (i) environmental
parameters and (i1) corrosion rate related parameters. In this way, two models have been
obtained offline to predict corrosion evolution. Eventually, a Particle Filter (PF) was
implemented to adapt the models to the observations of the corrosion level by the CNN.
The proposed framework integrates image processing, sensor measurements, and filter-
ing techniques for structural assessment. The PF guarantees the adaptability to real-time
observations of the corrosion evolution models developed offline, improving the reliabil-
ity of the methodology. While the presented framework has been applied to a helicopter
component, it can be easily applied to other systems. For instance, being based on image
processing, its image-based nature makes it well-suited for monitoring offshore or hard-
to-access structures using drones or fixed cameras. Eventually, this study provides a step
towards a more accurate and data-driven corrosion prognosis, enhancing the accuracy of
structural integrity assessments.



INTRODUCTION

Corrosion monitoring is a critical aspect due to its intrinsic probabilistic nature and
the intricate interplay between environmental factors and the material under corrosion.
Corrosion endangers the structural component integrity by reducing their thickness and
favouring the initiation of crack nucleation sites [1,2], as in the case of pitting corrosion.
A key feature of the corrosion process is that the corrosive phenomena are not mutually
exclusive, therefore it is possible to have pitting corrosion in a macroscopic generalised
corrosion. However, no probability-based relationship between generalised corrosion
and corrosion pits presence exists.

Within the Structural Health Monitoring (SHM) framework, corrosion phenomena are
usually monitored by exploiting non-destructive techniques (NDT) [3—-6]. However,
NDTs are only able to diagnose the current state of corrosion. Therefore, machine learn-
ing (ML) techniques are being developed and implemented for SHM purposes to predict
the corrosion rate of different phenomena [7-10].

Therefore, this work proposes a generalised corrosion monitoring framework to assess
the structural integrity of structures and components considering the possible presence
of corrosion pits. The framework relies on an image-based corrosion diagnosis step and
a prognostic step. Image-based corrosion diagnosis relies on a Convolutional Neural
Network (CNN) to perform semantic segmentation on images of a corroded helicopter
component (HC). These are discrete-in-time observations of the actual HC corrosion
level when the helicopter is not on missions. The CNN was trained with manually seg-
mented images from which corrosion indexes have been extracted. The latter have been
related to measures of either environmental parameters or corrosion-rate related param-
eters, obtaining two models for corrosion evolution prediction. The prognostic step uses
the models developed in a Particle Filter (PF), which also enables the adaptation of the
models to the CNN’s actual corrosion level measurements. The PF guarantees the adapt-
ability to real-time observations of the corrosion evolution models developed offline,
improving the reliability of the methodology.

The proposed framework integrates image processing, sensor measurements, and filter-
ing techniques for structural assessment. Its image-based nature makes it well-suited for
monitoring offshore or hard-to-access structures using drones or fixed cameras.
Eventually, this study provides a step towards a more accurate corrosion prognosis, im-
proving the accuracy of structural integrity assessments.

METHODOLOGY

This section describes the methodology implemented for the image-based SHM method-
ology for corrosion diagnosis and prognosis.
The framework developed relies on four steps to assess the structural assessment: (i)
models building and CNN training, (ii) corrosion diagnosis and prognosis, (iii) predic-
tions updating when new measurements are available, and (iv) inspection intervals up-
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dating by estimating the Residual Useful Life (RUL) based on corrosion level. The first
step of the framework must be performed offline, while the remaining three work online.
The offline step consists of (1) manual segmentation of corroded HC images, (i1) extrac-
tion of corrosion indexes (D)) from the segmented images, (iii) training of the CNN on
manually segmented images to perform automatic segmentation, and (iv) models based
on D and measurements acquired during exposure of the HCs. Segmentation means
associating a label to each pixel of an image, and the available pixel labels are HC and
corrosion. Figure 1 shows semantic segmentation applied to a generic corroded plate.
The damage indexes D are evaluated as the ratio between the number of pixels asso-
ciated with HC corrosion and the total number of pixels of the image. Then, a fitting
was performed to relate D to (i) the corrosion-evolution related parameters measured by
a sensor and (ii) the cumulatives of temperature, humidity and chloride salt deposition
obtained from a weather ground-station. The cumulatives have been used to take into
account time exposure. The cumulative of the free corrosion charge is not needed since it
is defined as the integral of the current over time, so time exposure is already addressed.
The choice between the two models only depends on data, e.g., sensor, availability.
Eventually, the CNN can be trained to perform automatic semantic segmentation, that is,
automatic labelling of image pixels to distinguish between corroded and non-corroded
regions. Once the CNN is trained and models have been built, the real-time operational
phase takes place. It relies on real-time measurements of either corrosion-related or envi-
ronmental parameters that serve as input to the models developed offline to estimate the
corrosion level (D,,,) of the HC during helicopter missions. Then, when the helicopter
goes back to the warehouse, pictures of the HC can be taken and fed to the CNN for
automatic segmentation. The CNN gives as output the actual corrosion level (D) of
the HC and this observation of the real corrosion level is used in a PF to correct the latest
model prediction D,,, obtaining the updated prediction and prognosis of the corrosion
level D; . Eventually, the inspection interval can be updated by knowing the corrosion
evolution prediction. In addition, if one knows the probability of having a corrosion pit,
and its geometrical properties, given a certain level of generalised corrosion, it is also
possible to compute the RUL of the HC evaluating if the pit propagates mechanically as a
fatigue crack. However, this last step depends on the specific component under analysis
and lacks of research interest. Therefore, it is not included in this work.
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Figure 1. Example of semantic segmentation on a generic plate.



CASE STUDY

Three identical HCs were exposed to a marine environment at the CNR MARECO
facility in Bonassola (Italy) from 06/05/2022 to 10/03/2024, namely HC-1, HC-2, and
HC-3. The HCs were photographed at different exposure times,e.g., different corrosion
levels, for a total of 22 images, e.g., one per month. At the same time, a LUNA ACUITY
LS sensor [11] was exposed to the same environment. This sensor hosts a lamina of the
same material as HC and measures, among environmental parameters, the free corrosion
charge. The focus is set only on the free corrosion charge for the LUNA ACUITY LS
sensor since it directly describes the evolution of the corrosion process from the elec-
trochemical point of view, including the effects that temperature, humidity, and other
parameters have on it. Similarly, temperature and humidity variations and chloride de-
position concentrations were acquired from an environmental ground station close to the
MARECO facility and with an on-ground salt-deposition trap in the MARECO facility,
respectively. Starting with the offline phase of the framework, the HCs’ pictures were
manually segmented to distinguish between corroded and non-corroded regions of the
component. An FCN-8s [12] network has been implemented to perform semantic seg-
mentation, and its architecture is shown in Table I. The training has been performed on
two of the four HCs, namely HC-1 and HC-2. The same two HCs were used to build
the two models for the evolution of the corrosion index. Figure 4 and Figure 5 show
the corrosion indexes obtained by fitting the corrosion indexes D extracted from manual
segmentation with cumulative of environmental parameters (D, c,) and free-corrosion
charge (D,, ), respectively. Operatively, the choice between the two models depends
only on sensor availability since it is preferable to use the model based on the free cor-
rosion charge since the sensor measuring this quantity must be installed directly on the
helicopter. Therefore, it measures a parameter related to the actual operating conditions
of the HC. Instead, the environmental parameters may be related to locations that can
differ from the local operating conditions of helicopter missions. However, thanks to the
PF, the choice of the model affects only partially the goodness of the prediction since it
is possible to adapt the prognosis to observation of the actual corrosion level.
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Figure 2. Corrosion indexes D, .,,,, obtained with the model based on environmental
data.
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Figure 3. Corrosion indexes D,, ., obtained with the model based on free corrosion
charge data.

Moving on to online operations, these models allow for continuous monitoring dur-
ing operations of the corrosion level, while the automatic segmentation of the HC pic-
tures represents a discrete assessment of the actual corrosion level when the helicopter
goes back to the warehouse. Figures 4 and 5 show an example of a real-time operation on
HC-3 using the models based on environmental parameters and free-corrosion charge,
respectively. The blue lines and triangles represent the average of the corrected predic-
tion given the observation (HC segmentation) made at the k-th step, while the black lines
represent the confidence bounds on the corrected predictions. The yellow triangle shows
the initial estimation of the corrosion index. Instead, the coloured curves in Figure 4a
and Figure 5a represent particles’ propagation, showing the prognosis and its statistical
dispersion. The figures show that both models can be successfully adapted to observa-
tions of the actual corrosion level thanks to the PF algorithm. However, it is not easy
for the PF to adapt the models to either a constant or decreasing trend of the corrosion
index. This is due to the growing trends shown by the developed model, e.g., the process
equations implemented in the PF. Indeed, this is not the trend expected from corrosion
evolution. The trend shown by the corrosion indexed observed with the semantic seg-
mentation is due to an intentional cleaning of the surface of the HC-3. The cleaning
removed the oxidation product formed on HC-3’s surface, causing observed decreasing
and constant trends. Therefore, the cleaning operations allowed for a stress test of the
developed framework with challenging data.



Layer Type Kernel Stride Padding Output Shape
Convl-1 Conv2D 3 %3 1 H xW x 64

p—

Convl-2 Conv2D 3x3 1 1 HxW x64
Pooll MaxPool2D 2 x 2 2 0 H/2 x W/2 x 64
Conv2-1 Conv2D 3x3 1 1 H/2 x W/2 x 128
Conv2-2 Conv2D 3x3 1 1 H/2 x W/2 x 128
Pool2 MaxPool2D 2 x 2 2 0 H/4x W/4 x 128
Conv3-1 Conv2D 3x3 1 1 H/4 x W/4 x 256
Conv3-2 Conv2D 3x3 1 1 H/4 x W/4 x 256
Conv3-3 Conv2D 3x3 1 1 H/4 x W/4 x 256
Pool3 MaxPool2D 2 x 2 2 0 H/8 x W/8 x 256
Conva-1 Conv2D  3x3 1 I HJS x W/8 x 512
Conv4-2 Conv2D 3x3 1 1 H/8 x W/8 x 512
Conv4-3 Conv2D 3x3 1 1 H/8 x W/8 x 512
Pool4 MaxPool2D 2 x 2 2 0 H/16 x W/16 x 512
Conv5-1 Conv2D 3x3 1 1 H/16 x W/16 x 512
Conv5-2 Conv2D 3x3 1 1 H/16 x W/16 x 512
Conv5-3 Conv2D 3x3 1 | H/16 x W/16 x 512
Pool5 MaxPool2D 2 x 2 2 0 H/32 x W/32 x 512
FC6 Conv2D 7TxT 1 0 H/32 x W/32 x 4096
FC7 Conv2D I1x1 1 0 H/32 x W/32 x 4096
Score Pool5 ~ Conv2D 1x1 1 0 H/32 x W/32x C
Upsample 1  Deconv2D 4 x 4 2 1 H/16 x W/16 x C
Score Pool4 ~ Conv2D 1x1 1 0 H/16 x W/16 x C
Upsample 2 Deconv2D 4 x 4 2 1 H/8 x W/8 x C
Score Pool3 ~ Conv2D 1x1 1 0 H/8 x W/8 x C
Upsample 3  Deconv2D 8 x 8 8 0 HxWxC

TABLE 1. FCN-8s Architecture.

CONCLUSIONS

This work presented an image-based framework for corrosion diagnosis and progno-
sis. The workflow of the proposed framework can be resumed in the following steps:

1. Manual segmentation of images of HC at different corrosion levels and extraction
of corrosion indexes.

2. Corrosion evolution models generation by fitting corrosion indexes with sensor
measurements.

3. CNN training to perform automatic semantic segmentation.

4. Corrosion diagnosis and prognosis with predictions updating when component
images are available.

5. Inspection interval updating based on corrosion level prognosis.
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Figure 4. Results of the PF applied to the model based on environmental parameters after
(a) 1 and (b) 22 months of exposure. The coloured curves in (a) represent particles’
propagation, showing the prognosis and the statistical dispersion.
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Figure 5. Results of the PF applied to the model based on free-corrosion charge after
(a) 1 and (b) 22 months of exposure. The coloured curves in (a) represent particles’
propagation, showing the prognosis and the statistical dispersion.

The results have shown that the proposed framework successfully allows for corrosion
diagnosis and prognosis. The framework is suitable for hard-to-access structures using
drones or cameras, thanks to its image-based nature that guarantees flexibility in the
application. Future work can focus on the application of transfer learning techniques to
adapt the CNN trained for semantic segmentation to new components.
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