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ABSTRACT 

Civil structures experience forces from external events, operational loads, and 

environmental conditions that induce vibrations and can lead to deformation that can 

compromise their integrity and safety. Precise computation of their displacement, velocity and 

acceleration aids in understanding their dynamic behaviour, detect failures early, optimise 

design and guarantee long-term durability. Traditional sensor-based approach, need physical 

contact, offer limited measurement points, are expensive, face accessibility issues, and lack 

scalability. These drawbacks prompt the need for non-contact, vision-based measurement 

techniques that offer flexibility, affordability, and comprehensive motion tracking. In this 

project, we propose a video-based method that utilises OpenCV based object tracking 

algorithms to measure kinematics such as displacement, velocity and acceleration of structural 

elements like steel cantilever beam, single degree of freedom pendulum and scaled portal 

frames. Several tracking algorithms such as Lucas-Kanade optical flow, CSRT (Channel and 

Spatial Reliability Tracker), MIL (Multiple Instance Learning), and KCF (Kernelized 

Correlation Filters) were leveraged to extract exact motion data over time by processing 

vibration videos of these structural elements. The videos are pre-processed to identify the 

structural element as the region of interest (ROI). Tracker-based approaches (CSRT, MIL, 

KCF) and Lucas-Kanade optical flow were utilised and displacement, velocity and acceleration 

were derived. The workflow involves frame extraction, grayscale conversion, and tracking 

algorithms, where Lucas-Kanade estimates vectors at the pixel level, while feature-based 

trackers record the trajectory of the beam. Plots of displacement vs time, velocity vs time and 

acceleration vs time depict vibration patterns and natural frequencies. The Fast Fourier 

Transforms (FFT) derived from both accelerometer data and video-based measurements are 

compared to validate the accuracy of the video-based analysis. By combining state-of-the art 

computer vision methods with structural analysis, this work represents a possible step toward 

modern, non-invasive methods for evaluating dynamic structural reactions. The comparative 

use of multiple tracking methods improves the approach’s reliability and applicability, paving 

the way for broader implementation in engineering processes. This approach can be leveraged 

to bigger structures. This method can be used in subsequent research to remotely examine the 

structural health of large-scale structures like buildings and bridges. Accuracy and efficiency 

can be further increased by incorporating deep learning for improved feature tracking and real-

time processing.   

INTRODUCTION AND BACKGROUND 

Structural Health Monitoring (SHM) is an essential domain concerned on assessing the 

integrity, performance and safety of structures throughout their operational life. It is essential 

for extending lifespan of infrastructure, optimizing maintenance schedules, and preventing 

catastrophic failures. Traditional SHM systems rely heavily on contact-based sensors such as 

accelerometers, strain gauges, and laser vibrometers to collect data related to structural motion, 

stress and strain [1]. Frequency-based approaches are a key subset of vibration-based SHM 

(VBSHM), though the extraction of modal parameters often requires complex algorithmic 

processing. This work aims to review and enhance VBSHM approaches, with an emphasis on 

modal parameter estimation using both traditional and modern methods. 

Recent advances in sensor technologies and cloud-based computation have led to a 

surge in data-driven approaches for SHM. As highlighted by Rakesh et al., machine learning 

(ML) has emerged as a powerful tool to analyse sensor-derived data, enabling better 
interpretation of structural stability. Integration of ML within SHM not only increases



automation but also enhances predictive capabilities. The use of vision-based and vibration-

based monitoring frameworks alongside ML algorithms provides a more holistic assessment 

of structural integrity [2]. Additionally, Rakesh et al. emphasize that structural degradation is 

inevitable and depends on environmental and construction variables. Unexpected loading 

conditions can accelerate failure mechanisms. Their study, which involved experimental and 

numerical analysis of 21 cantilever beams with varying damage conditions, demonstrated the 

sensitivity of natural frequencies to damage severity and location. These findings confirm that 

vibration-based damage detection, when combined with intelligent systems, holds significant 

promise for improving structural resilience [3]. While effective, traditional SHM systems are 

often labour-intensive, time-consuming, costly and complex [2].  

Vision-based monitoring techniques have gained considerable traction over the past 

decade. Leveraging advances in computer vision, image processing, and camera technology, 

these methods offer a non-contact, cost-effective, and scalable alternative to traditional sensor-

based approaches [4]. Several object tracking algorithms have been employed to estimate 

structural response from video, including correlation filter-based methods such as CSRT, KCF, 

and MIL, as well as optical flow techniques like Lucas-Kanade algorithm [5-8]. These trackers 

work by identifying a Region of Interest (ROI) on the structure and following its motion frame-

by-frame enabling the estimation of displacement, velocity and acceleration without physical 

contact. Ponmolar et al. employed Lucas Kanade method to track vehicles using fixed cameras, 

allowing for accurate monitoring of movement patterns and speed estimation [9]. Rani et al. 

employed KCF to track objects accurately for monitoring structural integrity in real-time 

allowing for timely interventions in case of anomalies [10]. Liu et al. incorporated 

Convolutional Neural Netowork (CNN) features so that KCF can better predict object locations 

and adapt to scale changes, enhancing tracking accuracy [11]. Farhodov et al. combined deep 

learning-based object detection with CSRT, leveraging Faster R-CNN for efficient tracking, 

particularly in dynamic environments [12].   

One of the key analyses in SHM is the frequency spectrum, obtained using the Fast 

Fourier Transform (FFT). Frequency-domain representations of displacement signals help in 

identifying dominant frequencies, which correlate with the natural modes of the structure. 

These dominant frequencies are essential for detecting anomalies, shifts due to damage, and 

understanding vibrational behaviour [13]. In this study, object tracking was performed using 

algorithms such as CSRT, MIL, KCF, and Lucas-Kanade Optical Flow, and the resulting 

displacement data was used to extract frequency components that reflect the structural 

dynamics- mirroring the capability of traditional physical sensors [14].  Despite their 

advantages, vision-based SHM methods face limitations, such as sensitivity to lighting 

conditions, motion blur, occlusions, and the need for camera calibration [15]. Additionally, 

performance may degrade for low-amplitude vibrations or long-distance monitoring. However, 

recent research efforts have explored ways to overcome these challenges using deep-learning, 

multi-camera stereo systems, and feature-based enhancement techniques [16]. In summary, 

vision-based techniques represent a promising direction for SHM, particularly in environments 

where traditional sensor deployment is impractical or cost-prohibitive. As tracking algorithms 

and computer vision hardware continue to evolve, their integration into mainstream SHM 

workflows is becoming increasingly feasible [17]. 

 

 

 

 



METHODOLOGY 

 
Experimental Setup and Video Acquisition: 

 

The investigate the dynamic response of physical structures under free vibration, an 

experimental setup was devised involving three distinct types- a steel cantilever beam, a single 

degree of freedom pendulum and a scaled portal frame. These structures were chosen in order 

to provide a comparative understanding of their dynamic motion utilising vision-based 

methodologies by capturing a variety of vibrational features including linear, nonlinear, and 

multi-degree-of-freedom behaviour. Each structure was excited manually to initiate free 

vibration. An iPhone was utilised to capture each structure’s dynamic activity in order to gather 

motion data. The camera was set up on a sturdy tripod or long stick and positioned at the right 

distance to record high-resolution videos at 30 frames per second (fps). This ensured clear view 

of the region of interest (ROI)-typically the tip of the beam, the centre of the pendulum or 

critical joints in the portal frame. The videos were recorded in an outdoor setting to reduce 

external interference. The camera was kept motionless for each recording session, and the 

structure was always kept within the frame. Without making physical contact, this arrangement 

offered unambiguous visual data for tracking displacement. The videos were used in the 

following analysis step, which involved vision-based motion tracking algorithms, and were 

saved in common formats (.MP4/.MOV). Figure 1 represents this experimental setup.                                                                                                             
 

                                           
                        (a)                                                    (b)                                                   (c) 
 

Figure 1: Experimental Setup of (a) Single Degree of Freedom Pendulum, (b) Steel 

Cantilever Beam and (c) Scaled Portal Frame 
 

 

ROI Selection, Preprocessing, and Displacement Estimation using Tracking and Optical 

Flow: 

 

The first step is analysing structural motion is analysing structural motion from a video 

is to choose a Region of Interest (ROI) inside a frame. This is usually the area of the structure 

that shows the most displacement, like the cantilever’s beam tip, the pendulum’s centre, or a 

joint in the portal frame. The ROI was manually selected in the initial frame of each video, 

forming the basis for subsequent motion analysis. After determining a ROI, each video frame 

was subjected to preprocessing techniques like histogram equalization to improve contrast, 

Gaussian blurring to reduce noise and grayscale conversion to simplify processing. Grayscale 

images are ideal for tracking and optical flow algorithms since they preserve essential structural 

features and eliminate redundant colour information. Figure 2 represents the Region of Interest 

(ROI) along with frames from the tracked videos. 



 

 

 

 

 

 

 

 

    

 

Figure 2: Region of Interest (ROI) and corresponding frames from the tracked videos 

Two methods were used to estimate motion: 

• Object tracking algorithms: To follow the ROI across frames, traditional trackers like 

CSRT, KCF, and MIL were used. These algorithms employ feature-based or 

correlation-based techniques to predict the object’s location in the following frame. 

They are particularly helpful for fast and approximate displacement estimation 

[5][6][7]. 

• Optical Flow (Lucas-Kanade Method): Pixel-level motion vectors were calculated 

using the Lucas-Kanade optical flow for more detailed motion analysis. By examining 

variations in intensity between consecutive frames, this technique finds important 

characteristics (such as corners and edges) and monitors their movement over time. 

Even for tiny motions, it offers detailed and precise displacement information [8]. 

The Euclidean distance between consecutive tracked positions was computed to quantify 

the ROI’s frame-to-frame displacement. Numerical differentiation techniques were then 

applied to estimate the velocity and acceleration of the structure. To analyse the dynamic 

behaviour of the system, a Fast Fourier Transform (FFT) was performed on the displacement 

(or acceleration) data, enabling the identification of dominant frequency components such as 

natural frequencies of vibration. Figure 3 represents this workflow diagram. 

                        
Figure 3: Workflow diagram 



Validation and Analysis of Dynamic Response 

The dynamic response of the structure was examined and contrasted with reference to 

accelerometer data in order to verify the motion predicted from video data. The analysis was 

based on frame-to-frame displacement of the Region of Interest (ROI), which was acquired 

using optical flow or object tracking. The displacement data was converted into velocity and 

acceleration profiles using numerical differentiation techniques.  

To determine the system’s dynamic characteristics, a Fast Fourier Transform (FFT) was 

performed on the displacement and acceleration time series. Dominant frequency components 

in the structural motion were identified by this frequency domain analysis. Equation (1) 

represents the Discrete Fourier Transform (DFT), which the Fast Fourier Transform (FFT) 

algorithm efficiently computes to convert time-domain signals into the frequency domain. 

These frequencies were then contrasted with those derived from accelerometer data, paying 

particular attention to the peaks that correspond to the structure’s natural modes of vibration. 

A close match between the video-based and sensor-based dominant frequencies validated the 

accuracy of video processing pipeline and demonstrated its viability for non-contact structural 

health monitoring.  

 

𝑋(𝑘) =  ∑ 𝑥(𝑛). 𝑒−
𝑗2П𝑘𝑛

𝑁 ,    𝑘 = 0, 1, 2, 3 … , 𝑁 − 1
  

𝑁−1

𝑛=0

 

 

(1) 

Where: 

• 𝑥(𝑛) is the input time-domain signal, 

• 𝑋(𝑘) is the corresponding frequency component at index k, 

• 𝑁 is the total number of samples, 

• 𝑗 is the imaginary unit, 

• 𝑒−𝑗2П𝑘𝑛/𝑁 represents the complex exponential basis functions. 

 

RESULTS 

 

  The dynamic response of three different structures- the steel cantilever beam, single 

degree of freedom pendulum, and scaled portal frame- was extracted by utilising the most 

effective motion estimation algorithm for each scenario. Based on comparative performance, 

CSRT was employed for rubber fall providing better tracking of its shape-based movement and 

portal frame due to its high precision in capturing small displacements.  For each case, 

displacement data was obtained by tracking the Region of Interest (ROI) across video frames. 

Velocity and acceleration were computed using numerical differentiation, and frequency 

analysis was performed using Fast Fourier Transform (FFT) to identify dominant vibration 

modes.   

 

 

 

 

 

 

 

 

 



Figure 4 below illustrate the time series of displacement, velocity, and acceleration 

along with the FFT spectrum of cantilever beam, pendulum and portal frame responses. The 

frequency domain plot demonstrates a clear dominant peak corresponding to the natural mode 

of vibration. 

                       

 

Figure 4: Time series of Displacement, Velocity and Acceleration and FFT spectrum of (a) 

Single Degree of Freedom Pendulum, (b) Steel Cantilever Beam and (c) Scaled Portal Frame 

 

Figure 5 below illustrate Fast Fourier Transform (FFT) spectrums of video and 

accelerometer plotted together in a single graph for comparison. 

 

Figure 5: FFT comparison of contact and non-contact measurements for (a) Simple 

Pendulum, (b) Steel Cantilever Beam and (c) Scaled Portal Frame 

 

 



Table 1 illustrates the comparison of contact and non-contact measurements of the three case 

studies that were conducted. 

TABLE I. COMPARISON OF CONTACT AND NON-CONTACT MEASUREMENTS OF CASE STUDIES 

Case Study FFT from 

Video (Hz) 

(Non-contact) 

FFT from 

Accelerometer (Hz) 

(Contact) 

Difference 

(%) 

Single Degree 

of Freedom Ball 

1.88 2.03 7.39 

Steel Cantilever 

Beam 

5.94 5.39 10.20 

Scaled Portal 

Frame 

5.39 5.32 1.32 

 

These results demonstrate minimal error across all cases. Thus, the video-based method has 

been shown to be successful. This further demonstrates the effectiveness of combining 

frequency and algorithm-specific movements.  

 

CONCLUSION AND FUTURE WORK 

 

This research presents a vision-based framework for tracking structural motion using 

object tracking algorithms and optical flow techniques. The approach effectively computes the 

displacement, acceleration and velocity of different physical structures under free vibration by 

utilizing ordinary video data. Validation against accelerometer data confirms the method’s 

accuracy and potential for practical application. As illustrated in the comparison table, the 

frequency values obtained from video analysis closely match those from accelerometer data 

across different structural scenarios. Notably, for the Scaled Portal Frame, the difference 

between the FFT results from video and accelerometer is only 1.32%, indicating high precision. 

While slightly larger discrepancies were observed for the Single Degree of Freedom Ball and 

the Steel Cantilever Beam (7.98% and 10.20%, respectively), the results remain within 

acceptable margins for practical SHM applications. 

These results indicate that with proper setup and algorithm selection, computer vision 

can be a reliable and affordable substitute for dynamic response monitoring, particularly in 

situations where the deployment of physical sensors is not feasible. Overall, this research lays 

the groundwork for non-contact structural health monitoring solutions that are accessible and 

scalable. In future work, the framework will be extended to enhance robustness and adaptability, 

enabling accurate motion extraction from any point of interest in the structure, regardless of 

scale or visibility constraints. 
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