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ABSTRACT

Civil structures experience forces from external events, operational loads, and
environmental conditions that induce vibrations and can lead to deformation that can
compromise their integrity and safety. Precise computation of their displacement, velocity and
acceleration aids in understanding their dynamic behaviour, detect failures early, optimise
design and guarantee long-term durability. Traditional sensor-based approach, need physical
contact, offer limited measurement points, are expensive, face accessibility issues, and lack
scalability. These drawbacks prompt the need for non-contact, vision-based measurement
techniques that offer flexibility, affordability, and comprehensive motion tracking. In this
project, we propose a video-based method that utilises OpenCV based object tracking
algorithms to measure kinematics such as displacement, velocity and acceleration of structural
elements like steel cantilever beam, single degree of freedom pendulum and scaled portal
frames. Several tracking algorithms such as Lucas-Kanade optical flow, CSRT (Channel and
Spatial Reliability Tracker), MIL (Multiple Instance Learning), and KCF (Kernelized
Correlation Filters) were leveraged to extract exact motion data over time by processing
vibration videos of these structural elements. The videos are pre-processed to identify the
structural element as the region of interest (ROI). Tracker-based approaches (CSRT, MIL,
KCF) and Lucas-Kanade optical flow were utilised and displacement, velocity and acceleration
were derived. The workflow involves frame extraction, grayscale conversion, and tracking
algorithms, where Lucas-Kanade estimates vectors at the pixel level, while feature-based
trackers record the trajectory of the beam. Plots of displacement vs time, velocity vs time and
acceleration vs time depict vibration patterns and natural frequencies. The Fast Fourier
Transforms (FFT) derived from both accelerometer data and video-based measurements are
compared to validate the accuracy of the video-based analysis. By combining state-of-the art
computer vision methods with structural analysis, this work represents a possible step toward
modern, non-invasive methods for evaluating dynamic structural reactions. The comparative
use of multiple tracking methods improves the approach’s reliability and applicability, paving
the way for broader implementation in engineering processes. This approach can be leveraged
to bigger structures. This method can be used in subsequent research to remotely examine the
structural health of large-scale structures like buildings and bridges. Accuracy and efficiency
can be further increased by incorporating deep learning for improved feature tracking and real-
time processing.

INTRODUCTION AND BACKGROUND

Structural Health Monitoring (SHM) is an essential domain concerned on assessing the
integrity, performance and safety of structures throughout their operational life. It is essential
for extending lifespan of infrastructure, optimizing maintenance schedules, and preventing
catastrophic failures. Traditional SHM systems rely heavily on contact-based sensors such as
accelerometers, strain gauges, and laser vibrometers to collect data related to structural motion,
stress and strain [1]. Frequency-based approaches are a key subset of vibration-based SHM
(VBSHM), though the extraction of modal parameters often requires complex algorithmic
processing. This work aims to review and enhance VBSHM approaches, with an emphasis on
modal parameter estimation using both traditional and modern methods.

Recent advances in sensor technologies and cloud-based computation have led to a
surge in data-driven approaches for SHM. As highlighted by Rakesh et al., machine learning
(ML) has emerged as a powerful tool to analyse sensor-derived data, enabling better
interpretation of structural stability. Integration of ML within SHM not only increases



automation but also enhances predictive capabilities. The use of vision-based and vibration-
based monitoring frameworks alongside ML algorithms provides a more holistic assessment
of structural integrity [2]. Additionally, Rakesh et al. emphasize that structural degradation is
inevitable and depends on environmental and construction variables. Unexpected loading
conditions can accelerate failure mechanisms. Their study, which involved experimental and
numerical analysis of 21 cantilever beams with varying damage conditions, demonstrated the
sensitivity of natural frequencies to damage severity and location. These findings confirm that
vibration-based damage detection, when combined with intelligent systems, holds significant
promise for improving structural resilience [3]. While effective, traditional SHM systems are
often labour-intensive, time-consuming, costly and complex [2].

Vision-based monitoring techniques have gained considerable traction over the past
decade. Leveraging advances in computer vision, image processing, and camera technology,
these methods offer a non-contact, cost-effective, and scalable alternative to traditional sensor-
based approaches [4]. Several object tracking algorithms have been employed to estimate
structural response from video, including correlation filter-based methods such as CSRT, KCF,
and MIL, as well as optical flow techniques like Lucas-Kanade algorithm [5-8]. These trackers
work by identifying a Region of Interest (ROI) on the structure and following its motion frame-
by-frame enabling the estimation of displacement, velocity and acceleration without physical
contact. Ponmolar et al. employed Lucas Kanade method to track vehicles using fixed cameras,
allowing for accurate monitoring of movement patterns and speed estimation [9]. Rani et al.
employed KCF to track objects accurately for monitoring structural integrity in real-time
allowing for timely interventions in case of anomalies [10]. Liu et al. incorporated
Convolutional Neural Netowork (CNN) features so that KCF can better predict object locations
and adapt to scale changes, enhancing tracking accuracy [11]. Farhodov et al. combined deep
learning-based object detection with CSRT, leveraging Faster R-CNN for efficient tracking,
particularly in dynamic environments [12].

One of the key analyses in SHM is the frequency spectrum, obtained using the Fast
Fourier Transform (FFT). Frequency-domain representations of displacement signals help in
identifying dominant frequencies, which correlate with the natural modes of the structure.
These dominant frequencies are essential for detecting anomalies, shifts due to damage, and
understanding vibrational behaviour [13]. In this study, object tracking was performed using
algorithms such as CSRT, MIL, KCF, and Lucas-Kanade Optical Flow, and the resulting
displacement data was used to extract frequency components that reflect the structural
dynamics- mirroring the capability of traditional physical sensors [14]. Despite their
advantages, vision-based SHM methods face limitations, such as sensitivity to lighting
conditions, motion blur, occlusions, and the need for camera calibration [15]. Additionally,
performance may degrade for low-amplitude vibrations or long-distance monitoring. However,
recent research efforts have explored ways to overcome these challenges using deep-learning,
multi-camera stereo systems, and feature-based enhancement techniques [16]. In summary,
vision-based techniques represent a promising direction for SHM, particularly in environments
where traditional sensor deployment is impractical or cost-prohibitive. As tracking algorithms
and computer vision hardware continue to evolve, their integration into mainstream SHM
workflows is becoming increasingly feasible [17].



METHODOLOGY

Experimental Setup and Video Acquisition:

The investigate the dynamic response of physical structures under free vibration, an
experimental setup was devised involving three distinct types- a steel cantilever beam, a single
degree of freedom pendulum and a scaled portal frame. These structures were chosen in order
to provide a comparative understanding of their dynamic motion utilising vision-based
methodologies by capturing a variety of vibrational features including linear, nonlinear, and
multi-degree-of-freedom behaviour. Each structure was excited manually to initiate free
vibration. An iPhone was utilised to capture each structure’s dynamic activity in order to gather
motion data. The camera was set up on a sturdy tripod or long stick and positioned at the right
distance to record high-resolution videos at 30 frames per second (fps). This ensured clear view
of the region of interest (ROI)-typically the tip of the beam, the centre of the pendulum or
critical joints in the portal frame. The videos were recorded in an outdoor setting to reduce
external interference. The camera was kept motionless for each recording session, and the
structure was always kept within the frame. Without making physical contact, this arrangement
offered unambiguous visual data for tracking displacement. The videos were used in the
following analysis step, which involved vision-based motion tracking algorithms, and were
saved in common formats (.MP4/.MOV). Figure 1 represents this experimental setup.

(b)

Figure 1: Experimental Setup of (a) Single Degree of Freedom Pendulum, (b) Steel
Cantilever Beam and (c) Scaled Portal Frame

ROI Selection, Preprocessing, and Displacement Estimation using Tracking and Optical
Flow:

The first step is analysing structural motion is analysing structural motion from a video
is to choose a Region of Interest (ROI) inside a frame. This is usually the area of the structure
that shows the most displacement, like the cantilever’s beam tip, the pendulum’s centre, or a
joint in the portal frame. The ROI was manually selected in the initial frame of each video,
forming the basis for subsequent motion analysis. After determining a ROI, each video frame
was subjected to preprocessing techniques like histogram equalization to improve contrast,
Gaussian blurring to reduce noise and grayscale conversion to simplify processing. Grayscale
images are ideal for tracking and optical flow algorithms since they preserve essential structural
features and eliminate redundant colour information. Figure 2 represents the Region of Interest
(ROI) along with frames from the tracked videos.



Figure 2: Region of Interest (ROI) and corresponding frames from the tracked videos

Two methods were used to estimate motion:

e Object tracking algorithms: To follow the ROI across frames, traditional trackers like
CSRT, KCF, and MIL were used. These algorithms employ feature-based or
correlation-based techniques to predict the object’s location in the following frame.
They are particularly helpful for fast and approximate displacement estimation
[51L61[7].

e Optical Flow (Lucas-Kanade Method): Pixel-level motion vectors were calculated
using the Lucas-Kanade optical flow for more detailed motion analysis. By examining
variations in intensity between consecutive frames, this technique finds important
characteristics (such as corners and edges) and monitors their movement over time.
Even for tiny motions, it offers detailed and precise displacement information [8].

The Euclidean distance between consecutive tracked positions was computed to quantify
the ROI’s frame-to-frame displacement. Numerical differentiation techniques were then
applied to estimate the velocity and acceleration of the structure. To analyse the dynamic
behaviour of the system, a Fast Fourier Transform (FFT) was performed on the displacement
(or acceleration) data, enabling the identification of dominant frequency components such as
natural frequencies of vibration. Figure 3 represents this workflow diagram.
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Figure 3: Workflow diagram
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Validation and Analysis of Dynamic Response

The dynamic response of the structure was examined and contrasted with reference to
accelerometer data in order to verify the motion predicted from video data. The analysis was
based on frame-to-frame displacement of the Region of Interest (ROI), which was acquired
using optical flow or object tracking. The displacement data was converted into velocity and
acceleration profiles using numerical differentiation techniques.

To determine the system’s dynamic characteristics, a Fast Fourier Transform (FFT) was
performed on the displacement and acceleration time series. Dominant frequency components
in the structural motion were identified by this frequency domain analysis. Equation (1)
represents the Discrete Fourier Transform (DFT), which the Fast Fourier Transform (FFT)
algorithm efficiently computes to convert time-domain signals into the frequency domain.
These frequencies were then contrasted with those derived from accelerometer data, paying
particular attention to the peaks that correspond to the structure’s natural modes of vibration.
A close match between the video-based and sensor-based dominant frequencies validated the
accuracy of video processing pipeline and demonstrated its viability for non-contact structural
health monitoring.

N-1 _j2Tkn (1)
X (k) = Z x(n).e” N, k=0,1,2,3..,N—1
n=0

e x(n) is the input time-domain signal,

e X(k) is the corresponding frequency component at index k,

e N is the total number of samples,

e jisthe imaginary unit,

o e J2Ikn/N represents the complex exponential basis functions.

RESULTS

The dynamic response of three different structures- the steel cantilever beam, single
degree of freedom pendulum, and scaled portal frame- was extracted by utilising the most
effective motion estimation algorithm for each scenario. Based on comparative performance,
CSRT was employed for rubber fall providing better tracking of its shape-based movement and
portal frame due to its high precision in capturing small displacements. For each case,
displacement data was obtained by tracking the Region of Interest (ROI) across video frames.
Velocity and acceleration were computed using numerical differentiation, and frequency
analysis was performed using Fast Fourier Transform (FFT) to identify dominant vibration
modes.



Figure 4 below illustrate the time series of displacement, velocity, and acceleration
along with the FFT spectrum of cantilever beam, pendulum and portal frame responses. The
frequency domain plot demonstrates a clear dominant peak corresponding to the natural mode
of vibration.
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Figure 4: Time series of Displacement, Velocity and Acceleration and FFT spectrum of (a)
Single Degree of Freedom Pendulum, (b) Steel Cantilever Beam and (c) Scaled Portal Frame

Figure 5 below illustrate Fast Fourier Transform (FFT) spectrums of video and
accelerometer plotted together in a single graph for comparison.
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Figure 5: FFT comparison of contact and non-contact measurements for (a) Simple
Pendulum, (b) Steel Cantilever Beam and (c) Scaled Portal Frame



Table 1 illustrates the comparison of contact and non-contact measurements of the three case
studies that were conducted.

TABLE I. COMPARISON OF CONTACT AND NON-CONTACT MEASUREMENTS OF CASE STUDIES

Case Study FFT from FFT from Difference
Video (Hz) Accelerometer (Hz) (%)
(Non-contact) (Contact)
Single Degree 1.88 2.03 7.39
of Freedom Ball
Steel Cantilever 5.94 5.39 10.20
Beam
Scaled Portal 5.39 5.32 1.32
Frame

These results demonstrate minimal error across all cases. Thus, the video-based method has
been shown to be successful. This further demonstrates the effectiveness of combining
frequency and algorithm-specific movements.

CONCLUSION AND FUTURE WORK

This research presents a vision-based framework for tracking structural motion using
object tracking algorithms and optical flow techniques. The approach effectively computes the
displacement, acceleration and velocity of different physical structures under free vibration by
utilizing ordinary video data. Validation against accelerometer data confirms the method’s
accuracy and potential for practical application. As illustrated in the comparison table, the
frequency values obtained from video analysis closely match those from accelerometer data
across different structural scenarios. Notably, for the Scaled Portal Frame, the difference
between the FFT results from video and accelerometer is only 1.32%, indicating high precision.
While slightly larger discrepancies were observed for the Single Degree of Freedom Ball and
the Steel Cantilever Beam (7.98% and 10.20%, respectively), the results remain within
acceptable margins for practical SHM applications.

These results indicate that with proper setup and algorithm selection, computer vision
can be a reliable and affordable substitute for dynamic response monitoring, particularly in
situations where the deployment of physical sensors is not feasible. Overall, this research lays
the groundwork for non-contact structural health monitoring solutions that are accessible and
scalable. In future work, the framework will be extended to enhance robustness and adaptability,
enabling accurate motion extraction from any point of interest in the structure, regardless of
scale or visibility constraints.
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