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ABSTRACT

Crack monitoring using distributed fiber optic sensing (DFOS) in civil engineering
has evolved significantly during recent years. Scientific and commercial applications of-
ten focus on distributed strain sensing based on Rayleigh scattering due to its high spatial
and strain resolution despite its limited sensing range. Brillouin sensing techniques are

more suitable for monitoring large-scale civil infrastructure as they can provide mea-
surements over numerous kilometers. The improved sensing range, however, results in
spatial limitations and therefore, restricted suitability for strain-based crack monitoring.
This paper presents an enhanced laboratory test series, in which the suitability of
various Brillouin interrogators for concrete crack monitoring was evaluated. Five indi-
vidual concrete specimens equipped with multiple installation setups were investigated
under well-known laboratory conditions, where the resulting fiber optic strain sensing
data could be related to the true crack width obtained by high-resolution distance trans-
ducers over the crack. An alternative method relates alterations in the raw Brillouin
frequency spectrum (BFS) to local distortion events like cracks, which is however an ex-
tensive, time-consuming process. Artificial intelligence (Al) is therefore applied to the
test data to identify BFS anomalies and relate them to the locally arising crack width.
First results demonstrate that Al can be an efficient tool to optimize traditional DFOS
monitoring strategies, but further optimization is required for reliable determination.

INTRODUCTION

Cracks inside concrete structures, i.e. their width and temporal alteration, are key
indicators for civil infrastructure assessment as they usually correlate with changes in
loading condition and imposed deformation. Comprehensive documentation of exist-
ing and emerging cracks is therefore essential and is usually provided manually within
bridge or tunnel inspections using manual crack meters. Conventional automated sys-
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tems are often either limited in their spatial resolution by providing discrete points only
or require a visual line-of-sight on the surface.

Distributed fiber optic sensing (DFOS) is extensively used for concrete crack mon-
itoring in recent years, especially in scientific-related projects and laboratory testing.
These applications mainly focus on Rayleigh scattering due to its high spatial resolu-
tion and strain resolution (e.g. [1] or [2]), but with significant restrictions in the sensing
range. Brillouin sensing techniques are more suitable for monitoring large-scale civil
infrastructure as they can provide measurements over numerous kilometers, which how-
ever results in spatial limitations and therefore impedes the capabilities for strain-based
crack monitoring. An alternative method relates alterations (c.f. double peaks) in the
raw Brillouin frequency spectrum (BFS) to arising local cracking (see e.g. [3]). Any
manual assessment and classification of the Brillouin spectrum is however an exten-
sive, time-consuming process due to the comprehensive data amount along large civil
infrastructures, which suggests more sophisticated approaches based on machine learn-
ing techniques and Artificial Intelligence (Al).

This contribution reports about a dedicated laboratory test series, in which the suit-
ability of various Brillouin interrogators for identifying and quantifying concrete cracks
has been investigated. In the following, the monitoring setup including five individual
test concrete specimens equipped with multiple installation setups as well as the crack
determination algorithm based on numerical integration is introduced. Derivations from
various Brillouin sensing interrogators are presented and compared to Rayleigh sensing
data as well as the true reference crack width obtained by traditional, high-resolution
distance transducers. The obtained Brillouin sensing data is also examined by Al-based
methods to identify BFS anomalies and relate them to the locally arising crack width.
Finally, an outlook on future research is given.

LABORATORY TEST SETUP AND CRACK SENSING ALGORITHM

In order to implement comprehensive data for strain-based crack assessment as well
as for Al evaluation, an enhanced test series consisting of five concrete test specimens
was carried out at Graz University of Technology (TU Graz, Laboratory for Structural
Engineering). All individual specimens feature a squared cross-sectional profile with a
width and height of 200 mm, and a total specimen length of 3000 mm as schematically
shown in Figure 1 (left). Each test structure was equipped with one central reinforce-
ment bar (diameter: 18 mm) for applying the loading force during testing. In addition,
thin steel plates were installed before concreting to weaken the cross-section at defined
locations, which ensures a controlled cracking of the structure during loading. The five
specimens vary depending on the number of crack locations, with different configura-
tions from one to five cracks being realized.

The testing specimens were equipped with multiple layers of fiber optic sensing ca-
bles, including tight-buffered optical fibers [4] as well as prefabricated sensing cables
from numerous manufacturers [5—7]. The sensors were glued to the reinforcement, di-
rectly embedded inside the specimens in different arrangement and also glued to the
outer surface using different adhesive after concreting (Figure 1, middle). Each speci-
men was tested separately under controlled axial loading, where the rebar was fixed at



the bottom and pulled apart at the top side (Figure 1, right) to initialize the crack open-
ing along the structure at the predefined locations. Loading was performed step-wise
up to loads of 180 kN (depending on the specimen), where the DFOS installation was
subsequently monitored with all different interrogators at each loading step.

DFOS basically delivers distributed strain (and temperature) profiles along the longi-
tudinal axis of the installed optical sensing fiber. Discrete cracking is usually reproduced
as local strain peak (c.f. Figure 2) in the DFOS signal. To relate the obtained information
to the crack width itself, the strain values can be numerically integrated over the area of
interest, in which the crack appears along the structure. This integration length, or rather
its start and end point along the signal, can be practically determined by analyzing the
strain gradient at each side of the peak. Hence, the strain difference from point j to j+1 is
calculated in relation to the difference to the maximum peak (Figure 2). The start or end
point is identified as the location, at which the ratio does not exceed a specified threshold
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Figure 1. Laboratory test setup: Schematic representation (left), manufactured test specimens
with applied DFOS cable (middle) and practical realization with one crack definition (right).
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Figure 2. Schematic representation of arising crack in DFOS signal and integration length for
crack width derivation (based on [8]).



over a defined number of following data points. For further information and details on
the determination principle reference is given to [8].

STRAIN-BASED CRACK ANALYSIS AND RESULTS

The five sample test series aim to analyze crack patterns with different spacing and
crack widths. Loading for all specimens was performed in two steps with 15 kN each
up to the initial cracking, which was determined to be around 30 kN. Afterwards, the
load was further increased in 10 kN steps up until the ultimate failure of the structure at
around 100 kN and beyond. By applying the mechanical crack initiation steel plates, it
could be ensured that major cracks only open at well defined locations. The strain-based
sensing results presented in this paper focus on a specimen with one crack location.

DFOS measurements were performed by Brillouin interrogators from three different
manufacturers utilizing the Brillouin Optical Time Domain Analysis (BOTDA) as well
as the the Brillouin Optical Frequency Domain Analysis (BOFDA) with a spatial reso-
lution of 0.5 m. Reference measurements were taken using a high-resolution OBR from
Luna Innovations Inc. (USA) based on the OFDR (Optical Frequency Domain Reflec-
tometry) to verify the obtained strain profiles. In addition, multiple distance transducers
(DD-1) from HBM GmbH (Germany) were placed at the specimens’ surface to monitor
the crack opening and corresponding width.

The resulting strain sensing profiles of one selected sensing cable for all different
DFOS interrogators are depicted in Figure 3). It must be noted that the data represents
the raw measurement signal and is not further processed or filtered. The high-resolution
OFDR measurements (left) confirms the crack opening at 30 kN, with a significant peak
arising in the middle of the specimen (position: 1.5 m) over an area of approx. 200 mm.
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Figure 3. Strain profiles recorded by various DFOS interrogators during load test:
Rayleigh OFDR and Brillouin B-01/B-02/B-03 (left to right).



TABLE I. CRACK WIDTHS DETERMINED FROM DFOS AND MEASURED BY
CONVENTIONAL DISTANCE TRANSDUCERS AT DIFFERENT LOAD LEVELS

crack width [mm]

DD-1 OFDR B-01 B-02 B-03
15 0.00 0.00 0.00 0.00 0.00
30 0.14 0.06 0.08 0.08 0.00
40  0.20 0.11 0.15 0.13 0.14
50 0.28 024 024 024 023
60 0.35 0.32 031 0.29 031
70 042 0.39 036 036 0.39
80 0.51 047 046 039 047
90 0.60 0.57 057 045 0.72

100 0.89 1.01 1.11 089 1.21

110 1.23 1.57 176 1.52 194

130  1.62 256 264 239 3.04

load [kN]

The Brillouin sensing techniques can not capture the initial cracking with such high res-
olution due to their spatial limitations, even if interrogator B-02 also indicates cracking
already at 30 kN. With increasing load, the peak width and magnitude is continuously
increasing up to the maximum load of 130 kN applied for the actual specimen. Although
the strain peak appears over a larger area, the Brillouin interrogators can represent the
OFDR technique well for loads higher than 30 kN expect for B-01, which only indicates
major strain events for the last two load steps. Comprehensive data reprocessing using
the full Brillouin spectrum however significantly optimizes the data representation for
this interrogator and can enable crack derivation in a reliable manner. The comparison
between the raw and optimized data is further discussed in [9].

By determining the integration length and numerical integration, the effective crack
width can be evaluated at the crack location. The numerical values are listed in Table I
for all DFOS technologies and the reference distance transducer. The determined crack
widths show good agreement between the high-resolution OFDR and the Brillouin sens-
ing systems, with maximum deviations lower than 0.1 mm at loads of up to 80 kN or
rather a width of approx. 0.5 mm. Structure-relevant concrete cracks are usually defined
in civil engineering with 0.3 mm and higher. This critical range can be unambiguously
derived for all sensors. Absolute accuracy is confirmed by the distance transducers on
the surface up to 90 kN. Higher loads indicates the ultimate failing progress of the struc-
ture, which is why the crack width derivation using numerical strain integration is no
longer applicable.

It must be noted that the quality of the crack width derivation is strongly related to
the parameter settings for the integration length. These vary depending on not only the
sensing technique but also the installation technique of the optical sensing cable. The
dedicated test series is capable of providing an essential lookup table to appropriately
perform the integration length determination for different configurations for future mon-
itoring applications.



ARTIFICIAL INTELLIGENCE: METHODOLOGY AND RESULTS

The assessment and classification of strain-based DFOS data is usually done by man-
ual routines and is therefore an extensive, time-consuming process due to the comprehen-
sive data amount the monitored structure, which implies optimized techniques based on
Artificial Intelligence. This section demonstrates the general capabilities and potential of
combining BOFDA data with Al technologies for crack identification and quantification
in civil structural health monitoring.

Conventional Brillouin sensing techniques evaluate strain by determining changes of
the mean Brillouin frequency shift (BFS), which often rely on single-peak curve fitting
by Lorentzian models. Brillouin sensing systems might be however restricted for crack
identification with small width due to their limitations in the spatial resolution. It could
be already shown that double peaks can arise in the Brillouin spectrum if local stress
events like cracks occur (c.f. [3]). Nevertheless, signals from practical applications might
diverge from the anticipated Lorentzian profile [10], which is why machine learning
becomes necessary to address more complex BFS patterns (e.g. [11]).

Training Details and A1 Model

The approach followed in this paper aims to automate two tasks with machine learn-
ing algorithms. The automation identifies anomalous BFS spectra along the optical net-
work and a regression approach to estimate the crack width. Both automations are based
on the similar approach for multiclass DFOS event classification reported in [12], but
consists of two main stages as schematically shown in Figure 4. The first stage is an
extraction of spectral features using a pre-trained 1D-CNN (Convolutional Neural Net-
work) autoencoder [13]. The reason for choosing this model is that autoencoders can
learn noise-robust latent representations by extracting only essential features while re-
moving irrelevant variations. The entire model contains approx. 185,000 trainable pa-
rameters, where training was performed to remove noise from both, normal and anoma-
lous BFS data for 50 epochs.
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Figure 4. Schematic workflow of Al model including feature extractor (encoder) and decision
tree ensembles.



The second stage of Al model uses two ensembles of decision trees that are trained
with the Extreme Gradient Boosting machine (XGBoost) [14] on the features extracted at
the first stage. The first ensemble is trained for binary classification (AD) implemented
within the optimization framework Optuna [15]. Optuna is a robust hyperparameter
optimization framework using a Tree-structured Parzen Estimator, enabling informed
decision-making, early stopping, making it an essential tool for complex tasks. The
model output is a binary decision whether the signal is anomalous or not. In addition, a
regression model is trained in the second step to quantify crack widths, optimizing the
reduction of the Root Mean Squared Error (RMSE).

This combined architecture was chosen as it balances CNN performance for fea-
ture extraction and robustness of XGBoost machines for overfitting on small datasets of
limited diversity, which can limit AI models for monitoring applications in civil engi-
neering.

Training Dataset and First Results

To train, validate and test the ML model, the data of four different concrete specimens
of the test series is utilized. The crack location is manually labeled for each loading step.
The Brillouin spectra of the first three specimens is used for training and validation of the
ML models, encompassing approx. 57,000 BES samples. Model testing is performed
based on the data of the fourth specimen. The crack width dataset is less comprehensive
as only approx. 1,600 anomalous BFS samples represent crack locations referenced with
conventional measurements.

The AD XGBoost model was evaluated by calculating accuracy (= 0.8545), precision
(= 0.7575), recall (= 0.6492), and Fl-score (= 0.6992). The corresponding confusion
matrix for the model testing is depicted in Figure 5 (left). It can be seen that the model
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Figure 5. Al modeling results: Confusion matrix (normalized row-wise) plotted after passing
the test set through the AD XGBoost classifier (left) and regression plot for true vs. predicted
values of crack width through XGBoost regressor (right).



is capable to distinguish normal BFS (true negatives) quite well and outputs low number
of false positives. However, a significant portion of anomalies is labeled as normal BFS
(35 % of false negatives), resulting in a low overall Fl-score. This could potentially
result from the typical similarity of the overall BFS data to normal BFS data.

The output of the XGBoost regressor model can be presented as the relation between
the predicted values of the crack width and the true reference values as shown in Figure 5
(right). It can be noted that the regression does not fit well for numerous predicted crack
widths, where the average RMSE must be indicated with 0.3799 mm. The coefficient
of determination, R?, showing is the proportion of the variation in the dependent vari-
able that is predictable from the independent variable, is equal to 0.4240, proving the
significant spread in the predicted values.

CONCLUSIONS AND OUTLOOK

In this paper, two different methods were implemented to analyze crack widths along
reinforced concrete structures using distributed fiber optic sensors based on Brillouin
sensing. An enhanced test series with five individual specimens equipped with multiple
DFOS installation setups was realized to investigate crack opening under well-known
laboratory conditions. The resulting strain profiles could be numerically integrated to
obtain crack widths at the crack locations for different load levels. The derived val-
ues correspond well with reference measurements from distance transducers mounted at
the surface for all tested Brillouin interrogators, with maximum deviations lower than
0.1 mm before the ultimate failure progress of the specimen.

In addition, Al-based evaluation was applied to the raw Brillouin frequency spec-
trum to identify local distortion events like cracks and derive corresponding widths. Al-
though first tests could show that Al is capable to classify normal spectrum behavior
well, further optimization is required for anomalous spectra to avoid misclassifications.
Furthermore, the regression model to derive numerical crack widths needs significant
improvement for reliable derivation.

The realized test series provides a wide range of Brillouin sensing data measured
by different interrogators along multiple sensing cable inside concrete structures. Up
to now, there is no distinction between cable type or installation technique within the
Al model. The evaluation strategy will be optimized by including corresponding infor-
mation or rather by selecting more suitable installation techniques for model training.
Moreover, it might be useful to combine local deficiency identification using Al models
with conventional strain-based analysis to determine crack widths more reliably.
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