Physics-Informed Guided Wavefield Data Completion
Abstract
Ultrasonic wavefields are widely employed in nondestructive testing and structural health monitoring to detect and evaluate structural damage. However, measuring wavefields continuously throughout space poses challenges and can be costly. To address this, we propose a novel approach that combines the wave equation with computer vision algorithms to visualize wavefields. Our algorithm incorporates the wave equation, which encapsulates our knowledge of wave propagation, to infer the wavefields in regions where direct measurement is not feasible. Specifically, we focus on reconstructing wavefields from partial measurements, where the wavefield data from large continuous regions are missing. The algorithm is tested on experimental data demonstrating its effectiveness in reconstructing the wavefields at unmeasured regions. This also benefits in reducing the need for expensive equipment and enhancing the accuracy of structural health monitoring at a lower cost. The results highlight the potential of our approach to advance ultrasonic wavefield imaging capabilities and open new avenues for Nondestructive testing and structural health monitoring.
DOI
10.12783/shm2023/36993
10.12783/shm2023/36993
Full Text:
PDFRefbacks
- There are currently no refbacks.