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ABSTRACT

Structural Health Monitoring (SHM) typically aims at producing methodologies for
the periodic, and often online, assessment of structures. While there are different ap-
proaches to SHM, there is one common necessary element if applied in practice - data
acquired from sensors. In an ideal scenario, sensors would be deployed anywhere on a
structure of interest and could be added retrospectively, if not included in the original
design. In practice, there are various limitations to the availability and installation of
sensors, such as physical access and cost. Virtual sensing has thus been proposed as a
solution to the problem of sensor availability and different approaches have been applied
in various fields. This paper applies and compares two approaches for virtual sensing in
structural dynamics: modal expansion which is model-based and Gaussian Process (GP)
regression which is data-based. The approaches are demonstrated on data from a Piper
PA-28 tailplane structure, which was tested with the help of a scanning-laser vibrometer
unduer laboratory conditions.

INTRODUCTION

Monitoring the state of structures is vital for their continued safe operation, and
also for the efficient management of their maintenance. Structural Health Monitoring
(SHM), refers essentially to any process that involves a periodic or on-line assessment of
a structure, and is a very active research field; comprehensive reviews can be found in [1].
While there are many different approaches to SHM, there is one common necessary
element if applied in practice — data acquired from sensors. Without reliable sensors to
provide data, no SHM approach can work, regardless of whether it is physics-based or
data-driven. In an ideal scenario, sensors could be installed anywhere on a structure of
interest and could be added retrospectively if required. In practice this is not usually
possible, as there are limitations in terms of cost and physical access. Retrospective
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fitting can be expensive or practically unfeasible, while inclusion in the original design
is costly or perhaps impossible without a priori knowledge. Virtual sensing has been
proposed as a solution to the problem of sensor availability and is also an active research
area.

In structural dynamics, virtual sensing has made use of Kalman filters [2,3]], dynamic
substructuring [4,5] and modal expansion [6]]. The latter includes applications in wind
turbines [7]] and has been compared with Kalman filters [8]. Usually in structural dy-
namics, the aim is to either infer measurements into unknown (unmeasured) locations
and/or to estimate full-field deformation (and strain) of the entire structure of interest.
Although Gaussian Process (GP) regression has been used in some form for virtual sens-
ing in other fields, it has not been applied widely in structural dynamics. The purpose of
this paper is to apply virtual sensing on a complex real aerospace structure by comparing
Modal Expansion and GP regression.

The layout of this paper is as follows: the next section presents the concept of virtual
sensing in the two approaches used here: modal expansion and GP regression. The third
section describes the structure, the experimental setup and the data processing. Section
four presents the results and compares the two approaches. Finally, a short conclusion
recaps the work in order to round off the paper.

VIRTUAL SENSING
Modal Expansion

Modal expansion as a form of virtual sensing is usually based on model reduction
techniques and makes use of the mode shapes of a structure (see [6]]). For most re-
duction/expansion approaches there can be a relationship between the full and reduced
spaces by,

X =TX, (1)

where X¢ is the displacement of the structure in the full-space and X, the displacement
in the reduced space: T is a transformation matrix. A similar relationship can be estab-
lished for different types of response, and also for the mass and stiffness matrices of a
model of a structure,

M = T*M, T )

K = TTK,T 3)

The SEREP transformation matrix [6]] uses the mode shapes of the structure which can
be derived either from an FE model or experimentally measured (see [9]]) by using the
following [6],

T = Ui (U, U,)'U; 4)

where Uy and U, are the mode shapes of the structure in full and reduced space respec-
tively. U, does not need to be a square matrix, which means that the number of mode
shapes chosen for the expansion, and the number of the chosen reduced degrees of free-
dom do not need to be the same. In this paper, experimentally measured mode shapes
are used and no FE model of the structure of interest is developed.



GP Regression

Rasmussen and Williams [10] define a Gaussian process (GP) as “a collection of
random variables, any finite number of which have a joint Gaussian distribution”. A
GP is thus completely defined by a mean and a covariance function. Here, a zero-mean
and a squared-exponential covariance function are applied. Covariance functions are
typically accompanied by some hyperparameters in order to obtain a better control over
the types of functions that are considered for the inference. Optimal hyperparameters
for GP regression can be chosen with the help of the maximum marginal likelihood of
the predictions with respect to the hyperparameters. For more details on GP regression,
and the exact solution of the maximisation of the marginal log likelihood via its partial
derivatives, the reader is referred again to [[10].

For the purposes of virtual sensing, GP regression is used here when the input vec-
tor consists of the time data of one or more sensors, and the target data-vector is the
time response of a sensor of interest. Only single-output GPs are used here in the clas-
sical multiple-input-single-output (MISO) format, therefore if one needs to predict the
response in different locations of the structure, multiple GP models will be required. The
software used for the implementation of GP regression was provided by [[10].

Performance Assessment

When comparing time traces, it may be typical to use the Time Response Assurance
Criterion (TRAC) [6]. Similar to the Modal Assurance Criterion (MAC) [11]], TRAC is
defined by,

(RTOTRTOT)?
(RTO?RTOi)(RTOJT)RTOj

where RT'O; and RT'O; represent the time signals at points ¢ and j. TRAC takes values
between 0 and 1.

The TRAC does not take into account scaling, so in order to check the quality of
estimates, the normalised mean-square error (MSE) is also used,

TRAC;; = 5)

n
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where the caret denotes an estimated quantity, y; is the actual observation, /N the total
number of observations and o, the standard deviation. In general, an MSE error below
5 is considered a good fit and below 1, excellent.

EXPERIMENTAL DATA

The structure of interest was one half of a tailplane from a Piper PA-28 of the ‘Chero-
kee’ variant. It can be seen in Figure [I]and it belongs to a small population of structures
where population-based SHM (PBSHM) has been applied in [12]. The wing section
has a symmetric airfoil (NACAO0012) with a chord of 0.76 m and a span of 3.62 m.
The tailplane was excited using Gaussian white noise through an electrodynamic shaker



Figure 2. An example of a tailplane structure tested with a scanning laser vibrometer
(left). Shaker setup (right).

while it was suspended to approximate free-free boundary conditions (see Figure[2). The
responses of the structure were recorded using a scanning-laser Doppler vibrometer, a
Polytec PSV-400 scanning head with a PSV-A-420 geometry scan unit controlled by an
OFV-5000 controller and a JSV-500 junction box.

All tests were performed with a frequency bandwidth of 1 kHz, a sample rate of 2.56
kHz and a frequency resolution of 0.3125 Hz (3200 spectral points). For the tailplane
structure used here, there were in total 295 scan points and these are considered ‘sen-
sor locations’ throughout this paper. For each response point there were six averages
recorded to estimate mobility (velocity based) Frequency Response Functions (FRFs,
HI estimator). Other types of FRFs (receptance, accelerance) were available, but were
not used in this study. The first 25 Natural frequencies and mode shapes of the structure
were extracted from the FRFs using the SDTools Matlab toolbox (max frequency at 225
Hz). During modal expansion, only the first 15 mode shapes were used here.

Time data were not available from the experimental test, but were estimated and
synthesised by using inverse Fourier transforms from the experimentally-recorded FRFs.
For the purposes of this work, the time signal which was used for virtual sensing was
the structure’s response to a random multi-sine (20 random sine wave frequencies) in
the bandwidth of 90 to 150 Hz, which is a subset of the frequency bandwidth of the
experimentally-acquired mode shapes.

RESULTS
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Figure 3. Optimised sensor locations (using a Genetic Algorithm) for modal expansion
using 4 sensors (left) and 16 sensors (right).
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Figure 4. Modal expansion: histogram of TRAC performance for response prediction
over all possible measurement locations when using 4 sensors (left) and 16 sensors
(right). Solution optimised for modal expansion.

Modal Expansion

Using modal expansion and the experimentally-measured mode shapes, excellent
results were possible both in terms of TRAC and MSE. However, results varied based
on the measurement locations used for prediction. There were in total 295 locations,
so there were too many possible combinations. An optimisation scheme was then used
based on Genetic Algorithms (GA) which selected the best locations (sensors) to predict
all the rest of the sensors of the tailplane. The objective function was based on the
average TRAC value and the number of possible sensors used for the prediction was
limited to 4 and 16. Figure 3] shows the finally selected locations along the scanning
grid of the tailplane. Figure {] shows the performance of the selected configurations
(in histograms) for all the possible locations: average TRAC was 0.62 for the 4-sensor
case and 0.88 for the 16 sensors. It is clear overall that the 16-sensor case performed
significantly better. Figures [5] and [6] show examples of excellent (high TRAC and low
MSE), and also higher MSE response prediction with the modal-expansion approach.
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Figure 5. Modal expansion: examples of excellent response prediction when using 4
sensors TRAC 0.99 and MSE 1.73 (left) and 16 sensors TRAC 0.99 MSE 0.78 (right).
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Figure 6. Modal expansion: examples of response prediction with high TRAC values,
but lower performance MSE values when using 4 sensors (left) and 16 sensors (right).

GP Regression

Direct comparison of the GP regression with the modal expansion is not exactly pos-
sible, as the single-output nature of the GP models used here, requires multiple models
for the full assessment of the scanning grid. Nevertheless, multiple models were trained
and it was found that very good prediction was possible, but results also varied based on
the locations. The optimised locations for the modal expansion did not perform equally
well in the GPs, with average TRAC values around 0.52; however it was possible to
optimise locations for the GPs only. Figure [7] shows the performance of the optimised
locations for the GPs and Figure [§] shows response prediction using GP regression. It
can be seen that in the 4-sensor case, the GPs outperform the modal expansion with an
average TRAC of 0.77 compared to 0.62, but have lower TRAC values for the 16-sensor
case.

CONCLUSION
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Figure 7. GP regression: histogram of TRAC performance for response prediction over
all possible measurement locations when using 4 sensors (left) and 16 sensors (right).
Both cases were optimised for GPs.
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Figure 8. GP regression: examples of response prediction with TRAC values of 0.97 and
MSE 3.4 when using 4 sensors (left) MSE 2.7 when using 16 sensors (right).

The purpose of this paper was to apply, and compare the use of two approaches for
virtual sensing in structural dynamics: modal expansion and Gaussian process regres-
sion. The application was done on a real and complex aerospace part: a tailplane struc-
ture from a PA-28 which was tested with a scanning laser vibrometer. Both approaches
were able to predict well the response, but performance varied based on the possible
sensor locations. An optimisation using a Genetic Algorithm was done for both cases.
Modal expansion performed better in the case of 16 sensors used, but a lot worse for the
case of the 4 sensors. Future work will explore and compare the influence of the num-
ber of sensors further. Modal expansion is not computationally expensive, but requires
mode shapes either from a numerical model or to be experimentally acquired. Gaussian
Processes on the other hand do not need any mode shapes, nor any physics-based model,
as they are entirely data-driven, but will require a training stage and training data. The
latter may mean that a sensor will have to be installed at a place of interest during a
training stage; be removed afterwards and be inferred by the remaining sensors during
remaining life or normal operation. Accurate physics-based models can be difficult or



costly to develop, especially on real and complex structures, and mode shapes can be
hard to obtain experimentally, especially with a high spatial resolution. The choice of
the algorithm will thus remain with the user, to decide based on the structure complexity
and accessibility.
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