
A Few-Shot Learning Framework for Rotor 
Unbalance and Shaft Crack Fault Diagnostic 
Based on Physics-Informed Neural Network 
 

WEIKUN DENG, KHANH T. P. NGUYEN, CHRISTIAN GOGU, 
JEROME MORIO and KAMAL MEDJAHER 

 
 

ABSTRACT 

This study aims to detect and localize rotor unbalance and shaft crack damage in 
a few-shot data scenario. It proposes a reinforcement learning-based approach with 
physics preferences (called RLP2). RLP2 is used to guide the physics consistency in the 
rotor finite element mimetic neural network (RFEMNN). The RFEMNN is first trained 
in an unsupervised manner using mixed simulation and experimental datasets in the task 
of reconstructing rotor’s vibration signals. Then, the RFEMNN is fine-tuned in the RLP2 
framework using a physics preference reward as policy loss to ensure similarity between 
hidden layer output and rotor system parameters. The output of the RFEMNN is fed into 
a downstream multi-output convolutional neural network (CNN) for fault diagnostic and 
localization. The proposed method’s effectiveness is demonstrated through experiments 
on a PT500 platform under zero-shot, one-shot, and few-shot learning scenarios. The 
obtained results indicate the potential of this method for the predictive maintenance of 
rotor systems in real-world applications with limited training data. 

 

INTRODUCTION 

Nowadays, deep learning (DL) techniques have demonstrated promising capabili- 
ties for diagnosing structural faults in rotating machinery. These techniques typically 
rely on extracting fault indicators from vast amounts of data containing rich fault infor- 
mation. However, the use of uninterpretable, data-centralized black-box models poses 
challenges to the development and trustworthiness of Prognostics and Health Manage- 
ment (PHM) technology. To address the issue of limited data availability and to achieve 
improved generalization performance, the application of few-shot learning (FSL) in the 
PHM domain has garnered increasing interest [1]. In literature, FSL can be categorized 
into three groups based on different algorithmic principles, as described in [2]: meta- 
learning, metric learning, memory learning, and data augmentation. For instance, Tao 
et al. [3] employed an unknown matching network model, which integrates parameter 
optimization-based meta-learning and metric-based learning. This approach addresses 
the challenges of sparse fault samples and cross-domain datasets in real industrial set- 
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tings. Zhang et al. [4] introduced a few-shot learning framework for bearing fault di-
agnostic based on model-agnostic meta-learning. By designing auxiliary classifiers as
a regularizer corresponding to hidden inception layer features, the framework enables
the training of an effective fault classifier using limited data. Regarding model architec-
ture, Cui et al. [5] and Zhang et al. [6] proposed a Siamese network model with residual
blocks for few-shot learning in bearing fault diagnostic. Wu et al. [7] presented a resid-
ual prototype network (RPN) for few-shot fault diagnostic of bearings by employing
meta-learning concepts and updating the model parameters using a query set.

Although the promising results demonstrated in the aforementioned articles are no-
table, the literature also mentions some remaining major challenges. Specifically, there
is a concern that purely data-centric learning models may not be sufficient to obtain fea-
ture representations capable of interpreting and extrapolating damage information in a
manner similar to physics formulations. Therefore, this paper aims to fill this gap by
proposing a few-shot learning solution from the perspective of physics-informed ma-
chine learning (PIML) . It introduces, in Section 2, a physics preference feedback in the
reinforcement learning of the rotor finite element mimetic neural network (RFEMNN)
architecture. To validate the few-shot learning capability of theproposed approach, ex-
periments are conducted in Section 3, using a rotor unbalance and shaft crack test bench.
Finally, the conclusion and perspective are presented in Section 4.

PROPOSED METHODOLOGY

This study presents a model that integrates the PIML architecture with RL. The prior
physics knowledge and its application, which is viewed as the preferences in RL reward,
will be presented in the following subsections. This paper assumes negligible motion
and deformation of the rotor along the axial direction and represents the dynamic be-
havior of rotor systems by using the rotor finite element method (FEM). Specifically,
the rotor is modeled as a continuum structure consisting of discrete elementary nodes,
which are represented by a symmetry matrix (m× n,m× n), where m denotes the de-
gree of freedom data for each node. In this study, m is set to 4. The main idea of FEM
in fault type recognition and defects location is shown in Eq.(1). It compares the differ-
ences between the actual monitoring vibration signals and the predicted ones with the
identification of the structure matrix changes caused by faults [8]. For example, when
the rotor has an unbalance, it causes abnormal vibration because of the mass increases
or decreases, which can be modeled by the theoretical value changes in the mass ma-
trix M. Similarly, the material stiffness at the crack location decreases and varies over
operating time, leading the time-varying stiffness elements in stiffness matrix K. The
equivalent matrix A comes from the New-mark β numerical integration that contains
mass M, damping D and stiffness S information:

dt = 1/fs, α0 = 1/(γ × dt2), α1 = β/(γ × dt)
A = S+ α0M+ α1D

(1)

Establishing the relationship between structural faults, changes in the value of parame-
ter A, and vibration response can be challenging in finite element (FE) models due to
their high dimensionality and a large number of unknown parameters. Various factors,



Figure 1. Overview of the proposed methodology

including rotor rotation speed, geometry, and material, can affect this relationship, and
quantifying their effects can be difficult. Moreover, the vibration variations induced by
small changes in A may be masked by noise in most fault conditions. Additionally, the
types and locations of faults in the rotor shaft structure can be diverse and complexly
coupled, leading to incomplete physics knowledge and making the modeling difficulty.

The proposed hybrid approach combines physics supervision with a trial-and-error
method, as illustrated in Fig. 1. It enables few-shot learning by leveraging information
about the structure matrix inferred from unlabeled simulation data and integrating it
into the diagnostic process. It consists of 4 major steps: 1) Building the rotor finite
element mimetic neural network (RFEMNN); 2) Design of the physics preferences; 3)
Reinforcement learning for fine-tuning with physics consistency preferences; 4) Few-
shot learning for fault recognition and localization. These steps are detailed as follows.

To efficiently model the matrix A in the physics-informed hidden layer structure,
the geometric architecture of A is considered in the design of the neural network (NN)
structure. Since A is a sparse symmetric matrix with a large number of zero elements, a
masking method is proposed to simulate its mathematical form by processing the hidden
layer outputs. This allows for the rapid construction of the network of finite element
method (FEM) topology-based physics-informed machine learning (PIML) architecture.
The purpose of the masking method is to restrict the positions of the weight parameters in
the neuron layers that can be updated during training, in order to shape the latent space.
The mask matrix is binary and has the same dimensions and non-zero distribution as the
real symmetric square matrix shown in Figure 2.

The “Mask” process can implicitly incorporate physics knowledge using the same
mathematical expression form by computing the Mask matrix deterministically. For un-
known parameters of the physics knowledge, an NN layer serves to learn them, while for
known parameters, a direct embedding is performed. After “Mask” process, the numer-
ical distribution of the structure in the PIML layer becomes mathematically consistent
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Figure 2. Illustration of the topology process applied to NN weight matrix.

with the rotor dynamics.
In the proposed PIML paradigm, we design a RL reward function that is based on the

physics consistency between the “PIML output” and the equivalence matrix of the actual
FEM system A. During the simulation of the actual FEM system, A is automatically
generated according to a manually given structure, which can be obtained inexpensively.
The “Structural Similarity Index (SSIM)” is used to measure the difference between the
two matrices as shown in Eq. (2).

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2)

The SSIM metric takes into account three aspects of the matrix: values, contrast, and
structure. In Eq. (2), x and y are two matrices being compared. The numerator of the
equation represents the similarity of the values and contrast of the two matrices, while
the denominator represents the similarity of the structural information. Here, µx and µy

represent the average elements intensities of the two matrices, σ2
x and σ2

y represent the
variances of the element’s intensities, and σxy represents the covariance between the el-
ements intensities of the two matrices. The constants c1 and c2 are small positive values
added to the equation to avoid instability when the denominator is close to zero. The
SSIM metric ranges from 0 to 1, with 1 indicating perfect similarity between the two
matrices, i.e, the best physics consistency. The RFEMNN model is first trained on the

Figure 3. Investigation of the vibration reconstruction ability (left) and physics consis-
tency(right) before RL fine-tuning

dataset that includes the real data and simulation data. This task is based on a recon-
struction of the vibration sequence. The results are shown in Fig.3. Initially, despite
the reconstruction error being relatively small (with an overall MSE of 3.2e−5), there is
a noticeable divergence between the embedded physical knowledge, denoted as “PIML



out”, and the simulated A, as illustrated in Fig.3. This suggests that the model optimiza-
tion trajectory does not align with the goal of achieving physical consistency. To address
this, a fine-tuning procedure is introduced to maintain the feature encoding capability
while improving the physical consistency, which is quantified by the difference between
“PIML out” and simulated A. This procedure corresponds to the third step depicted
in Fig.1. In this process, we clone the pre-trained RFEMM as PolicyRFEMNN , while
keeping the original pre-trained RFEMM intact and frozen as RawRFEMNN . Both these
models are fed with a (512, 1) vector as input, derived from data slicing results of the raw
vibration series. To refine the RL, we employ the Deep Deterministic Policy Gradient
(DDPG) algorithm [9], using the terms in Eq.(3) as reward metrics. In this setup, the
PolicyRFEMNN serves as the actor, with its hidden layer output labeled as “PIML out”
and Reconstructed vibration” forming the policy output.

LossPolicy = −RPolicy RFEMNN = −(αSSIM − βKL [||Ppolicy(st)− Praw(st)||]) (3)

where α and β are the hyperparameters that control the weight of the loss function.
PRFEMNN(st) is the prediction of the Policy RFEMNN on the state st. Ppolicy(st) and
Praw(st) are the reconstructed vibration of the RawRFEMNN and PolicyRFEMNN on the
state st respectively. Its goal is to keep the time series recovery ability of the actor by con-
sidering the KL divergence between the output of two PIML modules, PolicyRFEMNN

and RawRFEMNN , and simultaneously enhance their physics consistency with the equiv-
alence matrix A. So that the “PIML out” can be viewed as a beneficial additional gen-
eralized knowledge representation for the few-shot fault diagnostic. A critic NN is de-
signed to estimate the value function (Q-value) for a given state-action pair. It consists
of three dense layers with 64 neurons each, using the ReLU activation function for the
first two layers and no activation for the last layer, which outputs a single Q-value. In the
policy update step, the difference between the reward and the policy output is used as the
loss function, which is calculated using TensorFlow’s Gradient-Tape and updated using
the Adam optimizer for the “PolicyRFEMNN”. During training in the few-shot test, a
self-encoder based on DRSN-LSTM architecture serves as the policy autoencoder in the
downstream model, see Fig.4, which is connected to the encoder part of the RFEMNN
with frozen model parameters via a trainable CNN. The self-encoder establishes a com-
pressed representation of relevant physics in the hidden ”PIML” layer, which provides
additional rich information for PHM tasks.
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Figure 4. Downstream diagnostic module structure

EXPERIMENTAL VALIDATION



Figure 5. Fault experiment arrangement

This study is based on the Python-based rotor dynamics simulation library, ROSS
[10], to model a 44-node rotor system and simulate various faults, including unbalanced
defects, shaft cracks, and a combination of both. We generated 8940 vibration samples
in the rotor fault conditions, each consisting of 10240 data points, with randomized fault
locations and speeds. Additionally, we conducted experiments on a multi-structured test
rig, shown in Fig. 5. The fine-tuning results of RLP2 are detailed in Fig.6. It shows
the results of the vibration reconstruction after fine tune and the difference between the
PIML output and the matrix “A”.

As can be seen in Fig.6, the fine-tuning process is a dynamic balance of satisfying
physics knowledge and data-driven-based signal reconstruction accuracy. Referring to
Eq. 3, the discrepancy observed in the comparison between the “Rewards” and “SSIM”
curves denotes the KL divergence of the reconstructed time series results between the
PolicyRFEMNN and RawRFEMNN models, named time reconstruction MSE. At the end
of the fine-tuning process, the time reconstruction MSE is found to be small enough
(0.04), to ensure the similarity of the trend of the real and reconstructed vibration sig-
nals. In addition, significant improvements are made to the physics consistency of the
RFEMNN structure. The color map representing channel differences in the square ma-
trix shows that before training in Fig.3, the hidden layer output exhibited distinct channel
traits and differences, with a widespread different values and the largest difference con-
centrated in a few diagonal neurons and channels. This indicates that the distribution
did not align with the band symmetry of the physics matrix and the diagonal distribution
in A. Post fine-tuning, the PIML output showed marked similarity with matrix A, as
validated by a maximum SSIM value of 0.984 and a reward of 0.941. The square matrix
color map in Fig.6 underscores a decreased difference between the PIML output and A,
particularly along the diagonal. This signifies RFEMNN ability to consistently represent
structural and vibrational responses.

VALIDATION OF THE PHYSICS PROPERTIES’ CONSISTENCY

In this study, 2000 labeled vibration signal samples are generated using the ROSS
library, involving random simulation of a 0.5g unbalance, cracks with a depth of 0.01
shaft diameter, and axis diameter variation within a 44-node FE model. Slices of length
512 with a step size of 256 are extracted using a sliding window approach from each
sample in the auxiliary dataset DA. The proposed few-shot learning method is vali-
dated under different settings: zero-shot, one-shot, and few-shot, using various sample



Figure 6. Investigation of the vibration reconstruction ability (left) and physics consistency(right)
after RL fine-tuning

sources in the training data. Location accuracy is evaluated using MAE on one of the
10 folds of the original experimental data, and the results are presented in Table I. The
zero-shot learning achieves a diagnostic accuracy rate of 44.87%, correctly classifying
2866 samples. However, the RFEMNN model tends to classify most samples as either
unbalanced or combined faults due to the dataset’s configuration and distribution bias.
One-shot learning improves the diagnostic performance, especially in identifying crack
faults, by adding only one real fault data to the training. Few-shot learning yields the
best results, with an accuracy of 90.7%, enabling clearer identification and localization
of faults with few-shot samples. Nonetheless, false alarm situations persist, particularly
misclassifications of unbalanced and healthy samples. To enhance accuracy and reliabil-
ity, further refinements such as increasing data slice length and selecting representative
simulated samples for DA are necessary. Additionally, the model exhibits partial diag-
nostic capability for fault location even under zero-shot and one-shot scenarios, owing
to the physical consistency of “PIML out” with the simulation data from 2000 sets.

CONCLUSION

In this paper, a novel few-shot fault diagnostic method based on Physics-Informed
Machine Learning (PIML) is presented. The approach achieved a generalized physics
representation of system behavior by enforcing physics constraints during RL fine-tuning.
The validation of the method’s physics consistency is done by comparing similarity
changes between ”PIML out” and the equivalent matrix A of simulated data pre- and
post-fine-tuning via reinforcement learning. Experimental results demonstrated the few-
shot fault diagnostic capability using real data from varying label percentages. The
proposed approach effectively captured the structural information of the system ma-
trix for prognostics and health management. Notably, reasonable diagnostic accuracy is
achieved in one-shot and few-shot scenarios. Future work will focus on efficient em-
bedding techniques for heuristic physics knowledge and faster methods for designing
physics-informed structures with incomplete knowledge, further enhancing the method’s
applicability and effectiveness.



TABLE I. Diagnostic results in different few-shot sample scenarios (Z: Zero-shot, O: one-shot,
F: Few-shot, H: Healthy, U: Unbalance, C: Crack, U&C: Unbalance and Crack, LA: Location
accuracy.)

Diagnostics results
H U C U&C LA(%)

Z O F Z O F Z O F Z O F Z O F
H 0 680 1255 1102 1134 560 0 1 0 713 0 0 - - -

Real results U 0 245 8 1097 2074 2285 0 1 63 1259 36 0 65.79 92.0 99.2
C 0 2 0 55 61 0 0 262 411 256 86 0 51.79 84.8 97.1

U&C 0 0 0 36 158 0 0 2 0 1769 1645 1805 - - -
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