
ABSTRACT 

A probabilistic vibration-based global SHM technique is proposed. In the process, 
experimental data from a modal test on a wing structure is used to identify a unified 
model with i) a Vector-dependent Functionally Pooled (VFP) component, ii) and an 
Auto-Regressive eXogenous (ARX) component. LASSO regularization is incorporated 
as a model structure selection method while introducing model sparsity. A probabilistic 
damage identification/quantification method within a Bayesian architecture is applied 
to solve the inverse problem, which provides a decision confidence interval for damage 
estimation. 

INTRODUCTION 

Engineering structures are subject to many sources of uncertainty; from varying op- 
erating/environmental conditions to complex damage evolution, time-varying dynam- 
ics, and nonlinear behavior in seemingly identical components. Vibration-based active- 
sensing Structural Health Monitoring (SHM) methods form an important family of SHM 
methods that are frequently based on statistical/probabilistic metrics and damage-sensitive 
features developed for accurately and robustly analyzing complex structural dynamics 
and allowing the extraction of decision confidence intervals. To this end, stochastic time 
series models and derivative methods have been extensively used within vibration-based 
SHM to overcome the above challenges. Advantages such as accuracy in modeling 
system dynamics, robustness against uncertainties, and low data footprint make these 
models attractive for SHM applications. On the other hand, the damage state estima- 
tion task (localization and quantification) constitutes an inverse problem whose effective 
treatment depends on the forward system identification process (selected model struc- 
ture, model orders, parameter estimation, and potential hyperparameter tuning) and cor- 
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responding statistical properties of the selected model.
Regularization has been used extensively to overcome ill-posed linear inverse prob-

lems or to force sparsity when the model suffers poor generalization [1, 2]. Within the
framework of linear system identification, regularization posts physically comprehensi-
ble effects on model dynamics over time, space, and frequency domains. l1-norm regu-
larization (e.g. LASSO) induces sparsity by eliminating model parameters with a small
impact. Thus, sparse model identification techniques have been presented to increase
model generalizability and discover true dynamics [3, 4].

Regarding the inverse problem of damage identification, deterministic approaches
were used in traditional approaches, where the estimation result points to a specific
damage state without providing any statistical information [5–7]. Previous work done
on VFP-STS framework with GA-SQP inverse estimation managed to leverage the STS
model residual to provide probabilistic damage estimation with a rather deterministic
inverse technique. The Bayesian approach has been used extensively with deterministic
forward models such as finite element (FE) and constitutive models [8, 9]. By adopt-
ing the Bayesian approach and probabilistic sampling in inverse/optimization problems,
probabilistic damage diagnosis can be achieved independently over the STS model and
obtain the posterior distribution of both the damage parameter and STS model residual.

In order to avoid ill-posed and ill-conditioned inverse problems in damage state esti-
mation, this paper introduces the LASSO regularization to VFP-STS model as a model
structure selection technique to overcome overfitting and improve model generalization
capability. Additionally, the Bayesian inversion (MCMC-AM) is applied to the inverse
problem to account for out-of-sample uncertainties and provided a probabilistic damage
estimation results.

LASSO REGULARIZED VFP-ARX

The estimation of VFP-ARX model follows the system identification process intro-
duced by [10,11]. Via VFP method, multiple ARX models can be treated as one entity in
model identification. The stochasticity in the data set is characterized as time series resid-
ual covariance and related to damage state vector k via functional dependency [12, 13].
The general form of VFP-ARX(na)p model is given by:
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where na = nb designating the model order, p the number of function basis. with yk[t]
the data under various states specified by state vector k = [k1, k2, . . . , kn]. ek[t] is
the residual sequence of the model, which is assumed a white (serially uncorrelated)
zero mean sequence with variance σ2

e(k). Gj(k) is the function basis, where the model
parameters ai(k), bi(k) are modeled as explicit functions of the state vector k.

The regression form of Eqn. 1 is parameterized in terms of the parameter vector
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measured signals via Weighted Least Squares (WLS) as it is suggested by the Gauss-
Markov theorem [14].
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In these expressions Γe = E{eeT} (Γe = Γe[t] ⊗ IN , with IN designating the
N × N unity matrix) designates the residual covariance matrix, which is estimated via
Ordinary Least Squares. The final residual variance and residual covariance matrix esti-
mates are:
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The least absolute shrinkage and selection operator (LASSO) posts an l1-norm on
the coefficient of projection (θ) that effectively reduces some entries to zero. The WLS-
LASSO problem is formulated as:

θ̂
LASSO

= argmin
θ
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e e+ λ||θ||1 (4)

BAYESIAN DAMAGE ESTIMATION

Having the regularized VFP-ARX as the forward model, the Monte-Carlo Markov
Chain (MCMC), with Adaptive Metropolis (AM) sampling, is applied to the inverse
problem. To be estimated, the damage parameter is designated with a prior distribution
π(k). Considering a residual covariance that is unknown in realistic conditions, a prior
distribution is assumed for residual covariance as π(σ2

u). Thus, the joint prior distribution
of damage parameter and residual covariance is formulated as:

π(k : σ2
u) = π(k)π(σ2

u) (5)

The likelihood function is defined based on the distribution of damage parameter π(k),
model prediction M(k), and measured response y.

L(k, σ2
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(2πσu)N

exp(− 1

2σ2
u

(y −M(k))T (y −M(k))) (6)

With the prior distribution and likelihood function specified above, the corresponding
posterior distribution is formulated as below:

π(k, σ2
u|y) =

1

Z
π(k)π(σ2

u)L(k, σ2
u;y) (7)

Adaptive Metropolis (AM) method is applied as the sampling strategy, favoring its er-
godicity and asymptotic properties [15].

RESULTS AND ANALYSIS



Evaluations and observations are based on a data set obtained experimentally via
a vibration test. A wing section of composite skin-spar-rib construction is clamped
cantilever and subjected to random vibration at different damage states. Damages are
simulated by additional weights, {3, 6, 9, 12, 15, 18}g. And vibration responses are col-
lected by 15 accelerometers for 64s at a sampling frequency of 512Hz [16]. Two case
studies are set up for evaluating the performance of LASSO regularization and MCMC-
AM damage estimation. The first case is 1-D estimation of damage size within k1 =
{0, 3, 6, 9, 12, 15, 18}g, assuming the damage position is known at x = 4in , y = 0in. A
Uniform prior distribution (k1 ∼ U(0, 18)g) is applied to search for all possible damage
states. The 2-D case assumes unknown damage within k1 = {0, 3, 6, 9, 12, 15, 18}g,
and k2 = {4, 10, 16, 22, 28, 34, 40}in at y = 0in. The prior distribution is selected as-
suming a known previous damage state. For instance, this initiation of damage at 3g
would be estimated from a prior of k1 ∼ N (0, 3)g and k2 ∼ U(4, 40)in, which assumes
no damage along the span direction but has the probability to be damaged. Once the
damage is located, the prior of damage location (k2) is no longer uniform. For example,
when estimating damage at k1 = {12}g, k2 = {16}in] the prior would be defined as
k1 ∼ N (9, 3)g and k2 ∼ N (10, 6)in.

Model Selection via LASSO

In order to evaluate the impact of regularization on the model identification process
and provide insight for model structure selection, the Bayesian Information Criterion
(BIC) and residual sum of squares normalized by the signal sum of squares (RSS/SSS)
are used as preliminary characterizations of models’ over-fitting and prediction accuracy.
It can be observed from Figure. 1(a.1)(b.1) that LASSO regularization on full basis

(a.2) (b.2)

(a.1) (b.1)

Figure 1. The evaluation of BIC and RSS/SSS for: a) FP-ARX models with basis (p = 2 ∼ 7) and
regularization parameter (λ = 0 ∼ 0.01) b) VFP-ARX models with basis (p = 2 ∼ 49) and regularization
parameter (λ = 0 ∼ 0.01)



wdamage (g)

Figure 2. A comparison of the effect on ARX model parameters of FP-ARX(54)7, imposed by multiple
regularization levels from λ = 0(none) to λ = 0.01 with 0.002 increment. Independently estimated
ARX model parameters are shown with red ‘x’ at each sampled damage location. 2 stds bounds for each
parameter are shown by ‘- -’.

models, i.e. p = 7 and p = 49, can achieve similar effect to reducing the basis number
(p) of the model. Thus, emphasis is placed on leveraging LASSO as a model selection
technique to replace manual selection of function basis.

The effect of LASSO regularization on models’ change over damage parameter space
can be directly observed from arx model parameter (Eqn. 1). Fig. 2 and Fig. 3 show
the comparison between unregularized and regularized models with respect to ARX pa-
rameters estimated at a single damage state. It can be easily observed that FP-ARX(54)7
in Fig. 2(blue) and VFP-ARX(54)49 in Fig. 3(a) are able to fit every independently
estimated ARX parameter over the damage parameter space. However, suspicion of
overfitting emerges as well. By applying regularization, the complexity of the function
basis is reduced, leading to a simpler model over damage parameter space.

Finally, the effect of regularization on the process of damage parameter estimation
is examined. Fig. 4 shows the damage estimation results obtained by SQP optimization
via FP-ARX(54)7. The initial point is set to k0 = [0]g based on the assumption that is
no initial damage. It can be observed from Fig. 4(a)(c) that SQP is able to find the local
minimum. But it can also be trapped in local minimum as it is shown in Fig. 4(b). After
applying regularization of λ = 0.006, the RSS functions are modified to eliminate some

(a) (b)

Figure 3. ARX model parameters of VFP-ARX(54)49 with (a)λ = 0(none) and (b)λ = 0.001. Indepen-
dently estimated ARX model parameters are shown with ’∆’ at each damage location, where green ones
lie above the surface and the red ones vice versa.
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Figure 4. Representative damage state estimation results, via GA-SQP, are shown for FP-ARX(54)7 at
damage states: a)d) [0]g, b)e) [6]g, and c)f) [24]g. The effect of regularization is reflected by comparing:
a)b)c) λ = 0, and d)e)f) λ = 0.006.

local minimums as it is shown in Fig. 4(d)(f). A similar effect of regularization is also
observed in 2D damage cases that are shown in Fig. 7.

Bayesian Damage Estimation Under LASSO

In this section, the proposed Bayesian estimation approach is compared with pure
SQP optimization. Unlike the SQP method that eventually converges to one point esti-
mate and obtains probabilistic distribution from model residual series, Bayesian inversion-
based method (MCMC-AM) extracts estimation from the converged posterior samples.
Fig. 4 shows the damage estimation results obtained by SQP optimization via FP-
ARX(54)7. The initial point is set to k1 = [0]g based on the assumption that there is no
initial damage. Then, tt can be observed from Fig. 4(a)(c) that SQP is able to find the

(d) (e) (f)

(a) (b) (c)

Figure 5. Representative damage state estimation results, via MCMC-AM, are shown for FP-ARX(54)7
at damage states: a)d) [0]g, b)e) [6]g, and c)f) [24]g. The effect of regularization is reflected by comparing:
a)b)c) λ = 0, and d)e)f) λ = 0.006.
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Figure 6. Posterior PDFs regarding damage size (g) are shown at three representative damage cases,
where (a.1∼2) is k = [0] g, (b.1∼2) k = [12] g and, (b.1∼2) k = [18] g. The effect of regularization
is shown by the comparison between (a∼c.1) λ = 0, and (a∼c.2) λ = 0.006. The true damage state is
designated by red vertical line.

local minimum. But it can also be trapped in local minimum as it is shown in Fig. 4(b).
After applying regularization of λ = 0.006, the RSS functions are modified to eliminate
some local minimums as it is shown in Fig. 4(d)(f). A similar effect of regularization is
also observed in 2D damage cases that are shown in Fig. 7. When using the regularized
model, the estimations provided by the Bayesian approach are acceptable in most of the
representative cases shown in Fig. 6(d)∼(f) and Fig. 9(e)∼(f). In the case shown in Fig.

(a) (b) (c)

(d) (e) (f)

Figure 7. Representative damage state estimation results, via GA-SQP, are shown for VFP-ARX(54)49 at
damage states: a)d) [3, 10]g/in, b)e) [9, 16]g/in, and c)f) [9, 34]g/in, where the regularization is: a)b)c)
λ = 0, d)e)f) λ = 0.0006, and g)h)i) λ = 0.001. The true damage state is designated by red ‘o’ and
the damage estimation by red ‘x’. The 99% C.I. of damage estimation is the magenta ellipses over the
colored RSS/SSS contour.
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Figure 8. Representative damage state estimation results, via MCMC-AM, are shown for VFP-
ARX(54)49 at damage states: a)d)g) [3, 10]g/in, b)e)h) [9, 16]g/in, and c)f)i) [9, 34]g/in, where the
regularization is: a)b)c) λ = 0, d)e)f) λ = 0.0006, and g)h)i) λ = 0.001.

9(d), a good damage state estimation can also be achieved via thresholding or advanced
probabilistic models.

The effect of regularization can be observed from the comparison of the final pos-
terior distribution between regularized and unregularized models. When the model is
unregularized, a flat prior converges to multiple peaks as is shown in Fig. 6(a∼c.1).
Without using advanced probabilistic distribution models, the estimate of damage is ob-

(d) (e) (f)

(a) (b) (c)

Figure 9. Representative MCMC-AM posterior distribution results are shown for VFP-ARX(54)49 at
damage states: a)d)g) [3, 10]g/in, b)e)h) [9, 16]g/in, and c)f)i) [9, 34]g/in, where the regularization is:
a)b)c) λ = 0, d)e)f) λ = 0.0006, and g)h)i) λ = 0.001. The true damage state is designated by red vertical
and horizontal lines.



tained from the mean value and variance/covariance of the entire posterior distribution.
Thus, it can be seen in Fig. 5 that the final damage estimation deviates widely from
the true damage size and the corresponding C.I. covers the entire range of candidate
damage sizes. Consequently, it becomes clear that this process without regularization
doesn’t provide useful predictions, whereas regularization provides improvement. Fig.
6(a∼c.2) shows the final posterior when regularization (λ = 0.006) is applied, where
the posterior distributions converge to a single peak. As a result, the damage estimation
via non-parametric statistical moments can provide good results shown in Fig. 5(d∼f),
where the point estimates are accurate and enclose true damage value in C.I..

In 2D cases, regularization forces the final posterior distribution to a single peak as
it is shown in Fig. 9(b)(c)(e)(f). A different scenario is observed by comparing Fig. 9(a)
and (d), where multiple peaks still exist in the posterior when regularization is applied.
However, as the RSS function is smoothed in the vicinity of the true damage state, more
MCMC chains converge to the true damage state as it is shown in Fig. 8(a)(d). Thus, the
highest peak in the posterior distribution returns to the true damage state.

CONCLUDING REMARKS

This work aims to investigate using of LASSO regularization on the VFP-ARX
model for structure selection and applying Bayesian inversion on damage state estima-
tion instead of the deterministic optimization approach. It is shown that LASSO regu-
larization can serve the purpose of model structure selection by operating on VFP-ARX
models’ coefficient of projection and introducing sparsity as necessary, thus achieving
better generalizability and reducing local minimums in the RSS function. It is shown
that LASSO regularization provides a better-conditioned Bayesian inversion problem.

Using the Bayesian inverse for damage estimation provides an approach to describe
the stochastic nature of structural damage. Additionally, the Bayesian approach allows
the incorporation of prior selection to reduce ambiguity based on existing knowledge of
the damage state. Damage estimations for both damage size and location are shown to
be successful for a wing structure using proposed method.
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