
ABSTRACT 

For structural health monitoring (SHM), researchers have primarily investigated the 
effects of signals contaminated with stationary white noise, with very few studies exam- 
ining pollution caused by highly correlated nonstationary colored noise, such as Brown 
noise. To address this issue, this paper proposes an optimization-based damage detection 
technique for composite structures exposed to nonstationary colored noise using con- 
densed frequency response functions (CFRF) as damage-sensitive features (DSF). Two 
different signal-to-noise ratios (SNR) of Brownian motions, i.e., 20 and 10, are used in 
the investigation to contaminate CFRFs. Contamination produces nonstationary patterns, 
making it difficult to detect damage with vibration-driven methods. In this study, we pro- 
pose a new goal function based on Johansen cointegration, an econometric concept. The 
proposed objective function converts nonstationary CFRF signals into stationary repre- 
sentations, subsequently fed into optimization-based model updating algorithms. The 
Reptile Search Algorithm (RSA) is employed to update unknown structural damage in- 
dices based on the constructed objective function. The new method is validated on a finite 
element (FE) model simulating composite laminates with different ply orientations. By 
comparing the proposed method to a damage detection approach in the literature, the 
superiority of the proposed method is demonstrated. 

INTRODUCTION 

Model updating is a model-based SHM technique for improving the accuracy of nu- 
merical models simulating the behavior of structures. These methods aim to modify the 
unknown parameters of a structure’s FE model through iteration until the measured re- 
sponses match the results obtained from the updated FE model. In optimization-based 
model updating methods, a function based on the difference between measured and an- 
alytical structural responses is optimized to update the unknown physical parameters. 
Using computational techniques, an optimization algorithm provides the best solution to 
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these objective functions. Problems can be solved by various optimization algorithms,
including nonlinear programming, linear programming, metaheuristic algorithms, and
integer programming. Dinh-Cong et al. [1] proposed a novel damage detection approach
based on FE model updating using two sub-objectives function, modal assurance crite-
rion (MAC) and flexibility matrix change (FMC). An algorithm based on multi-objective
cuckoo search (MOCS) was applied to solve a function-based multi-objective optimiza-
tion, producing a set of Pareto-optimum solutions.

Various structural responses have been used to update models, including modal in-
formation, Frequency Response Functions (FRFs), strain responses, time histories, dy-
namic responses, and static-modal data combinations. Complex structures, for example,
three-dimensional trusses and composite structures, exhibit closely spaced modal char-
acteristics. In the presence of such a phenomenon, it is difficult to detect damage since
a significant amount of uncertainty exists in their response. In these structures, small
variations in stiffness or mass can have a large effect on the modal data. As a result, such
data provides suboptimal DSFs for SHM. As a superior feature, many researchers use
FRFs to detect damage on systems with closely-spaced eigenvalues; however, these are
highly sensitive to noise in measurements. Therefore, detecting damage to such systems
through noisy FRF data is challenging. A more detailed discussion of closely-situated
eigenvalues can be found in Hassani et al. [2].

White noise and colored noise are noise types that can contaminate vibration data,
such as FRFs. Gaussian distributions are usually used for the former, which have a flat
power spectral density (PSD). MATLAB-generated and theoretical PSD plots of noise
signals of different colors are shown in Figure 1. Based on the log-log plots of the figure,
it can be seen that the noise energy varies according to noise type and frequency range. Brown
noise introduces the most severe nonstationarity to the signal since it primarily affects lower
frequencies.

This study investigates the effects of brown noise on damage detection using CFRF signals as
a nonstationary colored noise that is the most severe. Various methods are available for modeling
colored noise. In this case, white noise can be converted to colored noise by passing it through
a causal linear-time invariant filter [3]. For SHM applications, it is usually assumed that noise
follows a stationary pattern [4]. This is a consequence of the assumption that all system dynamics
are time-invariant. Therefore, a stationary colored Gaussian noise distribution can be assumed for
the generated colored noise.

To reduce the effects of noise, advanced signal processing techniques, such as the Hilbert–Huang
transform, can be applied to capture variations in FRF data caused by damage, even when noise
levels are high. For damage detection based on vibration data, advanced signal processing is a crit-
ical component, as real-world signals tend to be nonlinear and nonstationary, especially in large
and complex structures such as bridges. Signal processing approaches that use time-frequency
signals extract sub-signals from an original signal based on two assumptions:

1. Decomposed sub-signals are monocomponent, which means they have one single oscilla-
tion mode. Here, the frequency of these sub-signals fluctuates around the center frequency
within a narrow band.

2. Original signal is constructed from sums of its sub-signals.

Due to their first property, such sub-signals can be defined in terms of instantaneous fre-
quency, phase, and amplitude. Using the sum of such properties of the decomposed signals, the
original signal’s instantaneous properties can be obtained. A number of time-frequency signal
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Figure 1. PSD plots of (a) theoretic and (b) noise generated by MATLAB of brown, pink, white, blue,
and purple color [4].

processing approaches have been used to identify structural damage, such as Wavelet transforma-
tions, empirical mode decompositions (EMDs), variational mode decompositions (VMDs), and
ensemble empirical mode decompositions (EEMDs). Applying these approaches, denoising can
also be achieved. As such, Mousavi et al. [5] analyzed damage detected in steel truss bridge mod-
els using a complete ensemble EMD with an adaptive noise algorithm. Several researchers have
studied the effects of noisy nonstationary patterns on FRFs. Hanson et al. [6] stated that gener-
ating FRF using colored noise is inherently unstable because in-band poles and zeros cannot be
used as a reference.

The concept of cointegration was initially derived from econometrics and sought to repre-
sent nonstationary signals as stationary. An analysis of cointegration’s effectiveness for SHM
was published in [7]. Li et al. [8] investigated the long-term monitoring of civil infrastructure,
mitigating the effects of nonstationary temperature variations.

In this study, the stationary representation is employed as a mapping and damage feature for
CFRF signals contaminated with nonstationary colored noises using the cointegration technique.
The use of CFRFs as DSF for damage detection has been widely studied for complex struc-
tures. Due to closely-spaced eigenvalues in these complex systems, modal data cannot be used
for detecting damage primarily due to these characteristics. This paper presents a new objective
function using Johansen cointegration for nonstationary signals contaminated by colored noises.
An optimization algorithm inspired by the hunting behavior of crocodiles is used in this study.
This algorithm is called Reptile Search Algorithm (RSA) [9]. Testing and validation of the new
method are conducted on composite laminates, which are examples of complex structures with
closely-spaced eigenvalues. As part of the evaluation of the proposed method, three performance
criteria are used: the mean sizing error (MSE), the relative error (RE), and the closeness index
(CI). The new method clearly demonstrates its ability to deal with highly correlated nonstation-
ary colored noise. Furthermore, its superiority compared to previous methods in the literature is
shown.

PROPOSED METHODOLOGY OVERVIEW

Three steps are involved in the proposed method - (1) simulating noisy CFRFs using the
CFRF matrix and contaminating them based on colored brown noise, (2) formulating the DSF



based on the Johansen cointegration approach, and (3) developing a novel objective function and
detecting damage using the derived DSF by applying an optimization-based damage detection
method.

Simulation and contamination of CFRFs with colored noise

Assuming that a n-DoF system is excited at its translational DOFs 1 by a vector of dynamic
forces f̄ , we can write the corresponding differential equation, based on the assumption that dam-
age only affects stiffness:

M̄¨̄x+ C̄ ˙̄x+ K̄dx̄ = f̄ (1)

where

K̄d =
ne∑
i=1

αik̄i (2)

K̄d, C̄, and M̄ , represent the condensed stiffness matrix, damping matrix, and mass matrix, re-
spectively. This equation uses the Rayleigh damping model of the form [C̄] = a[M̄] + b[K̄d] in
Eq.(1). This was accomplished by considering a damping ratio of 5% for the two lowest modes
of the structure, b and a.

Rearranging the Fourier transform of Eq.(1) with the excitation frequency ωk gives us:

X̄k =
(
−ω2

kM̄+ jωk C̄+ K̄d
)−1

F̄k (3)

where
H̄k =

(
−ω2

kM̄+ jωkC̄+ K̄d
)−1

(4)

Following that, the obtained columns H̄ are polluted by colored noise with spectral properties
|f |−β where f and β correspond to cyclic frequencies and real numbers between 2 and -2.

This paper uses the following procedures to contaminate CFRF signals with colored brown
noise. We first calculate the power of the signal and the power of the noise as follows:

PH̄(:,i) =
1

N

n=N∑
n=1

H̄(n, i)2 (5)

Pnoise =
1

N

n=N∑
n=1

ϵ(n)2 (6)

ϵ and H̄(:, i) represent simulated noise and the ith column of H̄, respectively. To achieve the
specified SNR values in db, we normalize simulated noise using λ as follows:

SNRdb = 10 log10

(
PH̄(:,i)

λ2 Pnoise

)
(7)

So, CFRF’s ith noisy column can be calculated according to this equation:

H̄noisy(:, i) = H̄(:, i) + λ ϵt (8)

where H̄noisy(:, i) is considered as the ith noisy column of the H̄, and the superscript t denoting
the transpose operator.

1Master DOFs in a condensed model.



Applying Johansen cointegration to generate a noise-polluted DSF

Through the cointegration of the columns of the contaminated CFRF, a unique signal is ob-
tained that is clear of nonstationary colored noise:

Ψ =

j=p∑
j=1

aj H̄noisy(:, j) (9)

where Ψ represents the residual of the Johansen cointegration of the brown noisy CFRF matrix
columns H̄noisy, assigned as CICFRF; p represents the number of excitation points in H̄noisy;
and aj corresponds to the cointegration coefficient for the jth row based on Eq.(9). Accordingly,
the first eigenvector, which corresponds to the largest eigenvalue, produces CICFRF1, the most
stationary combination of CFRF columns. Consequently, CICFRF2 shows a less stationary CFRF
column combination because of its second eigenvector. The results obtained from CICFRF1 and
CICFRF2 are further compared in the section below, so CICFRF1 is considered to be a DSF in
this study.

Proposed objective function

The sum of the partial derivatives of stiffness resulting from damage is expressed as follows:

δK̄ =
n∑

i=1

∂K̄

∂α̂i
δα̂i (10)

In addition, the variations in structural response can be expressed as follows:

δX̄c ≃ −H̄m × δK̄× X̄c (11)

Measured and computed quantities are indicated by the superscripts m and c, respectively. Eq.(10)
can be substituted into Eq.(11) by rewriting the result as:

δX̄ ≃ S̄× δα̂ (12)

where

S̄ =
[
− H̄m

(
∂K̄

∂α̂1

)
X̄c, . . . ,−H̄m

(
∂K̄

∂α̂n

)
X̄c] (13)

The following can be written based on Eqs.(3) and (4):

δX̄ = H̄m × F̄︸ ︷︷ ︸
X̄m

− H̄c × F̄︸ ︷︷ ︸
X̄c

(14)

Accordingly, at the tth iteration, δα̂ is expressed as follows:

δα̂t ≃
(
S̄
)+ (

H̄m × F̄− H̄c
t × F̄

)
(15)

where H̄c
t corresponds to the CFRF computed at time t using an updated damage vector at time t−

1, i.e. α̂t−1, with α̂0 = 0. Inverses of non-square matrices are obtained using the Moore–Penrose
inverse with a superscript +.

By replacing H̄m and H̄c by Ψc and Ψm , the following equation is obtained:

δαΨ
t ≃

(
SΨ
)+ (

Ψm × F̄−Ψc
t × F̄

)
(16)



Eq. 17 can be expressed as an objective function as follows:

G(αΨ
t ) = δαΨ

t −
(
SΨ
)+ (

Ψm × F̄−Ψc
t × F̄

)
(17)

In this paper, Eq.(17) is proposed to detect damage in structures with close eigenvalues. Dur-
ing iteration, Eq.(17) is optimized using the RSA, where α̂t, the value of αΨ at tth iteration, is
updated as αΨ

t = αΨ
t−1 + δαΨ

t , where αΨ
0 = 0. The flowchart of the proposed algorithm can be

found in Figure 2.
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Figure 2. Proposed algorithmic flowchart for damage detection.

NUMERICAL EXAMPLE

Numerical models of composite laminate plates are used to demonstrate the new damage
detection method. For this purpose, we adopted the structure and mechanical properties of the
composite plate presented by Reddy [10]. The following two configurations of the plate are
considered:

• Laminate composite plate with three layers (NoL=3) with ply orientation LA=(0◦/90◦/0◦).

• Laminate composite plate with six layers (NoL=6) with ply orientation LA=(0◦/45◦/0◦).

Each plate has 36 elements with two rotational and three translational DoFs per node, totaling 245
DOFs. Following the imposition of boundary conditions, 125 DOFs remain active. The proposed
method is evaluated in relation to two different damage scenarios as listed below:

• Scenario 1: In this case, stiffness reduction is present in elements 4, 16, 24, and 31 with
amounts of 0.20, 0.25, 0.30, and 0.15, respectively.



TABLE I. NATURAL FREQUENCIES OF COMPOSITE LAMINATE PLATES WITH VARIOUS CON-
FIGURATIONS (FIRST TEN MODES).

Lamination scheme Mode Number
1 2 3 4 5 6 7 8 9 10

Intact
NoL = 3,
LA = (0◦/90◦/0◦)

7.40 11.14 14.32 16.23 18.74 21.42 23.32 23.90 25.74 26.29

NoL = 6,
LA = (0◦/45◦/0◦)

7.64 11.53 14.74 16.82 19.07 21.99 23.78 24.90 25.78 26.60

Case 1
NoL = 3,
LA = (0◦/90◦/0◦)

7.22 11.00 14.09 16.10 18.50 21.15 22.80 23.68 25.30 26.04

NoL = 6,
LA = (0◦/45◦/0◦)

7.45 11.35 14.50 16.65 18.80 21.73 23.37 24.66 25.38 26.20

Case 2
NoL = 3,
LA = (0◦/90◦/0◦)

7.36 10.96 14.20 15.95 18.50 21.07 23.08 23.50 25.40 25.80

NoL = 6,
LA = (0◦/45◦/0◦)

7.57 11.30 14.60 16.50 18.70 21.69 23.48 24.40 25.45 26.10

• Scenario 2: In this case, stiffness reduction is present in elements 3, 10, 12, and 36 with
amounts of 0.2, 0.25, 0.3, and 0.15, respectively.

Table I shows ten natural frequencies for both intact and damaged composite laminate plates.
The plates’ optimal excitation location and frequency range was previously identified by Hassani
et al. [4]. As described above, CFRFs are synthesized using the proposed method and contam-
inated by brown noise–a colored noise that is non-stationary. Figure 3 illustrates the noise-free
and different noisy CFRFs, noise-contaminated with the colors brown, pink, and purple. As can
be seen from the figures, the CFRF that is contaminated with brown noise at SNR=10 is more
distorted than the CFRF that is contaminated with pink or purple noise at SNR=20. Hence, our
analysis focuses on CFRFs contaminated with nonstationary brown noise with both SNRs (10 and
20).

Figure 4 presents the fitness results obtained by solving Eq. (17) and applying the RSA
optimization algorithm to all damage scenarios. According to the figure, our proposed objective
function converges after only a few iterations, indicating that the chosen optimization algorithm is
appropriate. Table II displays the damage identification accuracy indices (MSE, CI, and RE) for
the investigated laminated composite models using the original CFRF and our proposed CICFRF
signals. It is noted that we adopted the damage indices of |MSE|, |RE|, and |CI| from Dos
Santos et al. [11].

The accuracy indices in Table II clearly show a significantly improved proposed method per-
formance using CICFRFs compared to using the original CFRFs or the method proposed by Vo-
Duy [12]. It is important to note that acceptable damage indices lie within the following range:
|MSE| close to 0, |RE| close to 0, |CI| close to 1.

In Figure 5, we display the calculated CICFRF1 and CICFRF2 vectors from Eq.(9) of our
new method. As discussed earlier, in the proposed objective function, CICFRF1 and CICFRF2

are used as input signals for RSA optimization. According to the results, the proposed algorithm
performs much better when CICFRF1 is used instead of CICFRF2. The superior performance of
CICFRF1 compared with CICFRF2 results from its improved stationary nature.

CONCLUDING REMARKS

In this paper, we proposed a new objective function to deal with nonstationary colored noise
contamination in laminated composite structures. For damage detection, RSA was used to op-
timize the objective function. The new method used the Johansen cointegration algorithm to
cointegrate CFRFs contaminated with brown noise characterized by nonstationarity following the



(a) SNR=10

(b) SNR=20

Figure 3. Comparison of CFRFs contaminated with different levels of colored noise and noise-free
CFRFs. Based on the plate model, data is obtained for NoL = 6, LA = (0◦/45◦/0◦), excitation at DOF
21 and measurement at DOF 62.

Brownian process. For the purpose of demonstrating the effectiveness of the proposed damage
detection method, CFRFs highly polluted with colored noise, i.e., SNR=10, were used. This
method is based on the assumption that it can reduce the effects of nonstationary colored noise
in CFRF signals. In order to test this hypothesis, two cointegration residual vectors were fed
into the damage detection problem, namely the CICFRF1, and CICFRF2. Based on the fact that
CICFRF1 is more stationary than CICFRF2, each vector was evaluated for its effectiveness in
detecting damage in the investigated laminated composite plate. The obtained results confirmed
the aforementioned hypothesis as the method using CICFRF1 performed significantly better. To
further illustrate the method’s capabilities, a comparison with recent methods from the literature
was carried out. Results showed that the use of CICFRF1 yielded significantly better damage
detection outcomes when the input data (columns of CFRF) were heavily influenced by brown
noise.
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(a) Case 1, LA = (0◦/90◦/0◦), NoL = 3 (b) Case 2, LA = (0◦/90◦/0◦), NoL = 3

(c) Case 1, LA = (0◦/45◦/0◦), NoL = 6 (d) Case 2, LA = (0◦/45◦/0◦), NoL = 6

Figure 4. Convergence trace of the RSA for 100 iterations for both damage cases and with SNR=10.
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