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ABSTRACT 
 

Traditional modal identification approaches require too much user interaction, 
which results in low implementation efficiency. This study develops an automatic 
approach that combines deep learning and blind source separation to determine the 
modal parameters of structures. The core object of the proposed approach is to establish 
a multi-task deep neural network (MTDNN) that enables it to automatically obtain 
independent modes from multi-mode vibration responses of structures. Then modal 
frequencies and damping ratios of structures can be extracted from independent modes 
by employing the traditional random decrement technique and curve fitting approach. 
The weights between the last two layers of MTDNN represent the corresponding mode 
shapes. The approach is implemented in a long-span cable-stayed bridge in engineering 
practice for validation. For the field test, five accelerometers are employed to derive 
acceleration responses of the structure. The results indicate the ability of the proposed 
approach to automatically determine the modal parameters of structures with reliable 
accuracy, which provides a promising new solution for online modal parameter 
identification and modal tracking of structures. 

 
 

INTRODUCTION 
 

The identification of modal parameters (i.e., modal frequencies, mode shapes, and 
damping ratios) of long-span bridges is important for structural health monitoring (SHM) 
because modal parameters are the inherent characteristics that can reflect the status of a 
structure. It has been validated that damages that happened to a structure will result in 
the change of modal parameters [1], therefore, to ensure structural safety, it’s of great 
necessity to identify modal parameters accurately and rapidly to facilitate structural 
damage detection. 
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At present, the input-output and output-only test-based approaches are the two main 

algorithms for modal parameter identification. The former method requires external 

input data which is difficult to obtain, thus, its application is limited. On the contrary, 

the output-only test-based approach, also named as operational modal analysis (OMA) 

approach, only relies on structural output data. this advantage has made it become the 

most prevailing method. However, the traditional OMA approaches don’t have the 

ability for continuous monitoring since it requires user intervention. Recently, many 

tries have been done to automate existing OMA approaches through different clustering 

techniques. For example, Zhang et al. [2] and Sun et al. [3] automate the identification 

process utilizing fast density peaks clustering algorithm and hierarchical clustering 

techniques, respectively. However, those methods only partially automate the modal 

parameters identification process, since they still depend on several user-defined 

parameters, thus, require user interaction. 

It’s well-known that deep learning technique has a significant ability to learn 

features and establish a relationship from mass data. However, fewer studies were found 

applying it for automated modal parameter identification. One represented work done 

by Liu et al. [4] developed a machine-learning-based modal identification approach 

based on the uncorrelation and non-Gaussianity characteristic of modal responses. 

Experiments showed that the developed neural network has good modal identification 

accuracy similar to that of OMA approaches but in a fully automated manner. 

Inspired by the above research, this study developed a novel automatic modal 

identification approach based on deep learning. The approach initially uses the sparse 

component analysis (SCA) technique to construct datasets based on multi-mode 

vibration responses and independent modal responses of structures. Then, a multi-task 

deep neural network (MTDNN) was established to automatically decompose structural 

multi-mode responses. Subsequently, structural modal parameters are determined from 

the output of MTDNN by using the random decrement technique (RDT) and curve 

fitting approach. The developed approach does not require any user intervention but 

with high computational efficiency and accuracy. 

 

 

METHODOLOGY 

 

As illustrated in Figure 1, the proposed automatic modal identification approach 

involves three parts: (1) multi-mode vibration responses decomposition by SCA 

approach for data set preparation; (2) MTDNN development, training, and prediction. 

The source signals and corresponding independent modal responses are treated as inputs 

and outputs of MTDNN, which aims to enforce MTDNN to be captive to separate the 

modes; (3) implementation of RDT and curve fitting approach to identify modal 

frequencies and damping ratios. Additionally, in the second step, the last layer of 

MTDNN was used to reconstruct the input. Thus, the weights between the penultimate 

and final layers of the MTDNN represent the mode shapes of structures. 

 

Data Preparation using SCA 

 

The purpose of SCA is to separate independent modal sources from origin structural 

responses for data sets preparation [5]. As shown in Figure 2, the short-time Fourier 

transform (STFT) was first implemented to transform source signal X(t) into time-



frequency (TF) domain X(ξ). Then the mixing matrix A and source signal reconstruction 

were successively implemented. The single source points (SSP) detection algorithm [6] 

and fuzzy c-means clustering algorithm were employed in the former part, and the STFT 

inverse transform was performed in the later part. 

In the above illustration, X(t) can represent the acceleration, velocity, or 

displacement responses of a structure. Each independent modal response obtained 

through SCA can be treated as outputs of the neural network. Therefore, as the SCA 

provides enough data samples, the deep neural network will learn the relationship 

between source signals and independent modal responses, and thus act similarly to SCA. 
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Figure 1. Proposed automatic modal identification approach. 

 

 

 
 

Figure 2. Principle of sparse component analysis approach 



Multi-task Deep Neural Network 

 

The designed MTDNN aims to separate source signals into independent modal 

responses automatically, thus enabling structural modal identification by RDT and 

curve fitting technique. Denote X as the origin vibration responses of structures 

collected by sensors. If there are n sensors, then X will have n channels as Eq. (1),  
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Where N denotes the number of sample points. 

As shown in Figure 3, supposing that the source signal is comprised of m 

independent responses, then there will be m subnets, and each of them try to learn one 

independent response. The input of each subnet is source signal X, therefore, the number 

of input neurons is kept consistent to the number of sensor channels. The number of 

hidden layers and number of neurons in the middle layer of the MTDNN, known as 

hyper-parameters, are determined by the training effect. It should be noted that the 

outputs from all subnets, donated as Q in Eq. (2), exactly represent modal responses, 
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Where each column represents one modal response. Meanwhile, the last output layer 

was the source signal. Therefore, the weight matrix, denoted as W in Eq. (3), between 

the penultimate and final layer will become the mode shapes of the structure 
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where each row corresponds to a mode shape. 

The designed loss function, denoted as L in Eq. (4), contains two items, one is modal 

response loss L1, and the other is reconstruction loss L2.  

 



 
 

Figure 3. MTDNN architecture 
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Where ijx  and ilq  denote source and independent modal responses, respectively; îjx  

and ˆ
ilq  represent reconstructed and modal responses predicted by MTDNN. The Adam 

algorithm was adopted to train the developed MTDNN. Each subset was pre-trained 

first, and then the whole neural network was fine-tuned in a multi-task learning manner. 

 

Free-decay Signal Acquisition using RDT 

 

Based on the independent modal responses obtained from MTDNN, the RDT 

approach is implemented to extract the free-decay responses of structures. Then, modal 

frequencies and damping ratios of structures can be determined through the FFT and 

curve fitting approach. The corresponding mode shapes can be obtained by the weights 

between the penultimate layer and the last layer of the trained MTDNN. 

 

 

EXPERIMENTAL VERIFICATION 

 

The collected acceleration data from Tianjin Yonghe, located in Tianjin, China, was 

used to validate the proposed approach. It is a pre-stressed concrete cable-stayed bridge 

with three spans. As shown in Figure 4, five accelerometers (C1–C5) were attached to 

the bridge at 1/4, 1/2, and 3/4 of the main span, and 1/2 of the side spans, respectively, 

to monitor vibration responses of the bridge. The sampling rate is 100 Hz, and the 

experiment was performed for 9 hours from 9:00 a.m. to 6:00 p.m. on July 12, 2019.  

When preparing data sets to train MTDNN, the cross-correlation function (CF) 

screening mechanism was adopted to eliminate spurious modal responses. Figure 5 



demonstrates the decomposed signals from acceleration data. it can be seen that there 

are 12 independent modes including 7 spurious modes whose CF peak value was less 

than 0.5. Therefore, only physical modes were retained and used for data sets 

construction. In this study, 10000 s of the acceleration data collected after 3:00 pm were 

used. These signals were divided into training, validation, and test sets according to the 

ratio of 8:1:1. 
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Figure 4. Locations of acceleration sensors on the bridge  

 

 
 
Figure 5. Determination of physical mode via CF screening mechanism based on acceleration 
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Figure 6. Loss-function drop curves of the MTDNN 



 
TABLE 1. ESTIMATED MODAL PARAMETERS FROM ACCELERATION DATA. 

Mode 
Frequency (Hz) Damping ratio (%) 

SSI FDD MTDNN SSI FDD MTDNN 

1 0.4109 0.4124 0.4102 1.46 1.39 1.44 

2 0.5886 0.5890 0.5886 1.26 1.28 1.20 

3 0.9696 0.9703 0.9688 1.00 1.05 0.91 

4 1.0952 1.0953 1.0950 0.89 0.87 0.87 

5 1.4503 1.4503 1.4501 0..84 0.83 0.80 

 

 

 
 

Figure 7. MAC values using different approaches: (a) FDD; and (b) MTDNN. 

 

 

The designed MTDNN has 5 neutrons in the input layer corresponding to 5 

acceleration channels C1-C5. The hidden layer contains 5 fully connected layers, each 

of which has 20 neurons. The penultimate layer contains 5 neurons corresponding to 5 

physical modes, and the last layer also comprises 5 neurons corresponding to 5 channels 

of the source signal. The learning rate was set to 0.001 when training the designed 

MTDNN. The loss converges at epoch 250 as shown in Figure 6, indicating that 

MTDNN has learned the mapping relationship from source responses to independent 

modal responses 

Once obtain the trained MTDNN, the test data was fed into it successively to get 

independent responses. RDT and curve fitting approach were also employed 

followingly to calculate frequencies and damping ratios. The results are listed in Table 1 

including results obtained by SSI and FDD approaches. If treating SSI results as the 

reference, the identification errors of modal frequencies obtained by MTDNN and FDD 

are less than 0.17% and 0.36%, respectively. Meanwhile, Figure 7 also gives the results 

of mode shapes obtained from weights between the penultimate and final layer of 

MTDNN. It can be concluded that MTDNN also gives acceptable accuracy compared 

to SSI and FDD. It should be noted that MTDNN works in the prediction stage, and 

thus doesn’t require any user intervention. Therefore, MTDNN provides an alternative 

approach for automated modal identification. 

 

 



CONCLUSIONS 

 

In this study, a multi-task deep neural network (MTDNN) is proposed to automate 

structural modal identification. An experiment on a long-span cable-stayed bridge 

showed that MTDNN gives precise modal results compared to the SSI approach. Based 

on this study, the following main conclusions were summarized: 

⚫ The proposed approach did not require any user intervention for the modal 

identification process. Once the MTDNN network training is completed, the new 

structural response data were input to the network to autonomously output 

independent modal responses. With the help of RDT and curve fitting approach, 

modal frequencies and damping ratios can be determined rapidly. 

⚫ The analysis results from the long-span cable-stayed bridge demonstrate that 

the developed MTDNN can automatically determine the modal parameters of 

structures with reliable accuracy. The MAC values derived by MTDNN and SSI are 

close to 1, also validating the significant identification accuracy of the proposed 

method. 

⚫ The proposed MTDNN provides an alternative approach for automated modal 

identification. Meanwhile, it also has the potential for real-time monitoring due to its 

rapid prediction speed. 
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