
ABSTRACT 

A development of a method of structural nonlinearity extraction is introduced for fast 
evaluation of structural damage conditions in post-earthquake events using the video 
data that is taken and shared in societies. The video data-based structural analysis has 
advanced rapidly in recent years due to advantages of non-contact data acquisitions, 
high spatial resolution in low-cost device, and so on. This study presents the 
experimental verification conducted by the shaking table tests, and to extract 
singularities spatial domains due to nonlinearity events using computer vision (CV)- 
based technology. In the shaking table test, two three-story aluminum frame models, 
whose modal frequencies are designed to become slightly different, are used to 
introduce some kinds of structural nonlinearities, such as hitting, boundary condition 
changes, and residual deformations in some of members. The present study solely 
concentrates on boundary condition nonlinearity, which is achieved by incorporating 
a controllable hinge member with a trigger magnet at the base of the columns to 
simulate the boundary constraint change from fixed end to hinge end during 
excitation. When the input excitation level is large enough, the magnets detach and 
cause the boundary constraint to change. A video camera is put in front of the model 
to capture the whole experiment, and the acquired video data are used for the 
verification. Optical flow method, as an effective video processing technique, can be 
used to estimate the real-world object motion between observer and scene by a dense 
field corresponding to the interframe displacement of each pixel. Farneback optical 
flow algorithm is selected here to extract the motion information of models; Then, 
the node strength index is introduced as the feature extraction to detect the 
nonlinearity events. The change in boundary conditions can significantly alter 
structural local motion information, leading to a clear mutation in node strength that 
can serve as an indicator of nonlinearity events. The results in this experimental study 
show the possibilities of video-based technology for the fast damage condition 
evaluation in the post-earthquake. 
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INTRODUCTION 

 

Recently, modern sensing technologies have been used by structural health 

monitoring (SHM) to detect damage and assess civil-infrastructure performance. The 

availability of key structural response data is essential for SHM investigations and 

engineering applications [1]. In general, the traditional data-driven structural 

response monitoring approach is used for such purposes. However, this approach 

becomes less beneficial due to some practical limitations, including the inconsistency 

of reference location for displacement response measurement, the incompatible 

behavior between the global structural response and the locally installed attached 

sensors, incomplete data observation due to limited instrumentation, and temporary 

interruption in the data acquisition process due to system maintenance are among few 

of them [2-3]. To cope with these limitations, different methods such as wireless 

sensors, Kalman-filter-based response estimators, Global Positioning System (GPS), 

and, particularly, Computer-vision (CV) based methods have been employed for the 

efficiency improvement and capacity enhancement of the SHM-system applicability 

[4]. 

Recently, CV-based methods are becoming more popular in the field of SHM 

owing to their potential characteristics like cost efficiency, non-contact full-field 

measurements capability, and ease of operation [5]. With the advancement in CV, 

cameras have been extensively used as contactless sensors for SHM. The acquisition 

of video data has also become easier, which makes video-based structural damage 

evaluation methods more promising. 

During the progression of structural damage, a multitude of nonlinearity events 

are likely to arise. Although such nonlinearity events may not be indicative of damage 

alone, they can serve as a key indicator of suspected damage, rendering the detection 

of such nonlinear events an effective approach for detecting structural damage 

occurrences. The manifestation of nonlinearity events in structural vibration is most 

prominently expressed through the motion characteristics of the structure. As such, 

observing the motion of the structure is a viable approach for identifying structural 

nonlinearity events. Optical flow, as an effective video processing technique, can be 

used to estimate the real-world object motion between observer and scene by a dense 

field corresponding to the interframe displacement of each pixel. The implementation 

of the optical flow method is based on a series of assumptions, and the assumptions 

vary for different optical flow methods. For instance, the Lucas-Kanade (LK) 

localized optical flow method is applied to the laboratory experiment by assuming 

the brightness consistency and small displacement about the tracking point [6]. The 

more advanced Farneback optical flow method employs a binary quadratic 

polynomial for the brightness intensity function for the neighborhood area in the 

region of interest (ROI), which enables full-field motion estimation and more 

complicated trajectory tracking [7]. The extraction of motion information lays the 

foundation for the nonlinearity events evaluation of the structure. Subsequently, the 

localization of structural damages can be achieved by integrating the relevant feature 

extraction indicators. 

Moreover, shake table test has emerged as a prominent technique for conducting 

structural dynamic and damage evaluation during seismic events. The test has the 

capability to accurately replicate the failure modes and damage patterns of actual 

structures under earthquake conditions. It is often utilized to assess both linear or 



nonlinear, elastic or inelastic dynamic responses of structures. Furthermore, the 

strategic placement of video cameras enables the gathering of detailed footage 

containing pertinent damage information. 

This paper presents a novel approach for localizing nonlinearity events by 

designing a shake table test to simulate a strong nonlinear event: boundary constraint 

changes during excitation (boundary-condition nonlinearity). Additionally, the node 

strength network feature index based on Farneback optical flow is employed to 

localize the nonlinearity events using video data. Initially, a dynamic response test is 

performed to determine the resonance frequencies of the two models, which enables 

an understanding of the structure's state and aids in selecting an appropriate frame 

rate for subsequent video capture. Subsequently, the Farneback optical flow 

algorithm is utilized to calculate the optical flow. A repulsive force-weighted network 

is then constructed, and the node strength matrix is obtained by utilizing the node 

degree as the characteristic parameter. Finally, the normalized node strength matrix 

is leveraged to detect structural nonlinearity during earthquake events. 

 

 

METHODOLOGY 

 

The Farneback optical flow and node strength network are employed for 

structural motion estimation and nonlinearity extraction. The video data is collected 

and pre-processed at first. Then, the proposed methods are used to extract the 

nonlinearity features and localize the damages. For both methods, a detailed 

mathematical formulation and framework are presented in the following sub-sections.  

 

Farneback Optical Flow Method 

 

Optical flow, as an effective video processing technique to analyze displacement 

of objects, can be generally categorized into two types: sparse optical flow and dense 

optical flow. The sparse optical flow only needs to process local pixels from the 

whole image, e.g., the Lucas-Kanade method (LK). In contrast, the dense optical 

process of all the pixel points of an image is time-consuming but can be more accurate, 

e.g., the Horn-Schunck method (HS) and the Farneback method. Here, the Farneback 

method uses a polynomial expansion, which allows it to model more complex motion 

patterns than the linear models used by HS and LK algorithms. As a result, the 

Farneback algorithm can estimate the motion of objects with more complicated 

trajectories.  

For the Farneback optical flow method, the basic assumption is that in a small 

image neighborhood area, the brightness intensity function f (x, y) of the pixel vector 

p = (x y)T can be approximately expressed by a binary quadratic polynomial: 

 
 f (x, y) ～ a0 + a1x + a2y + a3x2 + a4y2 + a5xy (1) 

 

Eq. (1) can be written in matrix form as follow: 

 
 f (p) ～ pTAp + b

T
p + c (2) 

 

where A is a symmetric matrix, b is a vector, and c is a scalar, respectively, 
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In order to solve this Eq. (2), the exact quadratic polynomial at time t is 

considered as: 

 
 f

t
(p) = pTAtp + bt

T
p + ct (4) 

 

After a short time interval Δt , the displacement of p is  Δp (Δx, Δy) , so the 

brightness intensity of (p + Δp) at a time (t + Δt) is: 

 
 f
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T
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Expanding the Eq. (5), it follows: 
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And then, if At is not singular, the global displacement Δp between two 

consecutive images I1 and I2 can be obtained as follows: 

 
 Δp = -1/2 At+Δt 

-1 (bt+Δt - bt)Δp = -1/2 A
t+Δt

-1  (b
t+Δt

- bt) (7) 

 

So the motion information can be estimated pointwise according to Eq. (7). To 

reduce the influence of noise, the error function 𝑒 of the neighborhood area 𝑁 can be 

constructed: 

 
 

𝑒 = ∑ ω

ΔN∈N

(ΔN)‖A(p + ΔN)Δp - Δb(p + ΔN)‖2 (8) 

 

where ω(ΔN)  is the Gaussian weighting function in neighborhood area N 

and Δb = -1/2 (bt + Δt  - bt). In this study, a 9 by 9 pixel neighborhood area is selected, 

considering the calculation time and identification accuracy. The weighting function 

can reflect the influence degree of each point in the neighborhood area and the value 

will increase as each pixel is close to the target pixel in the neighborhood area. 

 

Node Strength Network 

 

Following the occurrence of nonlinearity events, such as sudden boundary 

changes, the structure frequently experiences sudden changes in the velocity vector 

(magnitude and orientation) of the local area during earthquake events. These 

velocity changes can be utilized to construct a network of all pixel points in the image 

data, where the interaction force between two nodes is represented as an edge in the 

network. The presence of an edge between the nodes is determined by the repulsive 

force between the nodes, with the inertial centrifugal force F being chosen to reflect 

the repulsive force. When a nonlinearity event occurs in a region and causes an 



increase in repulsive force towards adjacent regions, the boundaries can be detected. 

For a given field, the inertial centrifugal force between the central pixel point (x0, y0) 

and other points in a two-dimensional neighborhood N of size (x0  ε, y0  ε) can be 

expressed by the following formula [8-9]: 

 
 

F⃗⃗ ij = -mikij

vij
2

dij

e ij (9) 

 

where mi is the mass of the pixel point i. All the mass of points are set as unit 1 in this 

paper. dij is the distance between point i and point j and the unit is pixel, 𝑒⃗⃗ 𝑖𝑗 is the 

orientation vector. vij and kij is the relative velocity and a coefficient that can be 

determined by the following equation, respectively: 

 

vij = {
(v 

i
 - v j)∙e ij, if  (v i

 - v j)∙e ij > 0 

            0    ,         otherwise      
 (10) 

 

kij = {
(v 

i
 ∙ e i j) / ‖v i‖ , if  v i ∙ e i j > 0,  𝑣𝑖≠ 0 

             0      ,         otherwise      
 (11) 

 

Then, for the adjacency matrix, the node strength s(i) of node i can be constructed 

and expressed as follow: 

 
 

s(i) = ∑|F⃗⃗ ij|

j

n = 1

 (12) 

 

After calculating each pixel point of the image, the node strength matrix S of a 

grayscale image containing c columns and r rows can be obtained: 

 
 

S = [

s11 ⋯ s1c

⋮ ⋱ ⋮
sr1 ⋯ src

] (13) 

 

 

DESCRIPTIONS OF THE TEST MODEL 

 

In this study, a three-story aluminum frame model with a controllable hinge 

bearing is used in a shake table test to simulate changes in structural boundary 

conditions. The dimensions of the column are 630 mm (length), 30 mm (width), and 

2 mm (height), while the plate is a square with a side length of 200 mm and a 

thickness of 10 mm. The first three order resonance frequencies of the model using 

fixed end are 6.82 Hz, 19.2 Hz, and 28.37 Hz. The overall model is depicted in Figure 

1, while Figure 2 shows the design of the controllable hinge bearing used to simulate 

the changes in boundary conditions. Initially, the magnet is connected to the iron 

block and the connection is fixed. However, upon input of seismic waves, the magnet 

will detach, resulting in a change in the boundary condition from a fixed connection 

to a hinge connection. Such changes in boundary conditions can alter the vibration  



 
 

Figure 1. Overall diagram of test model. 

 

 

 
 

Figure 2. (a) Test model with hinge bearing (b) Size drawing (c) Details of bearing.  

 

 

mode (the displacement dx and the rotation rx change to free) of the structure and give 

rise to strong nonlinearity in the system. In addition, a random signal with a frequency 

range of 3-50 Hz and a root mean square (RMS) acceleration of 0.1 standard gravity 

is selected as the input wave, generated using MATLAB. The video data is acquired 

using a Sony FDR-AX700 camera with a pixel resolution of 1920  1080 and a frame 

rate set to 120 fps to comply with the Nyquist sampling theorem, which requires the 

sampling frequency to be greater than twice the maximum resonance frequency of 

the models. Due to insufficient indoor lighting, two lamps are used to provide 

supplemental lighting during the video capture process to reduce excessive noise in 

the video. 

 
 

IDENTIFICATION RESULTS 

 

To accurately determine the change in vibration pattern of the model following 

the boundary condition change and the precise time of the change, an accelerometer  

(a) (b) 

(c) 



 
 

Figure 3. Acceleration response of the top floor. 

 

 

is strategically placed on the top floor of the model. This enabled the precise 

measurement of acceleration changes both before and after the boundary condition 

change, and the result is presented in Figure 3.  The acceleration response at the top 

floor of the model shows a significant change at approximately 16 seconds (see 

Figure 3), indicating that the boundary condition of the model has changed at this 

time. The observed change in the acceleration response can be attributed to the energy 

dissipation caused by the hinge bearing. 

The following step is the acquisition and analysis of video data. To capture the 

entire process, a 1-minute video is recorded, which includes the 25.6 seconds of the 

input wave. To improve computational efficiency, only 2-second segments that 

contain pounding events are extracted and processed at a lower resolution. Using 

Farneback optical flow, the velocity and orientation of all pixel points are computed 

for each frame. Based on this information, a node strength network is constructed. 

The results of the three phases (before, during, and after the change) are presented in 

Figure 4. It can be seen that during the boundary changes, the bearing regions exhibit 

dense highlight parts (as seen in the yellow rectangle area), and the motion pattern of 

the base floor changes as well (as evidenced by the disappearance of the highlight 

part in Figure 4(b) compared with Figures 4(a) and 4(c)). These observations suggest 

that nonlinearities exist in this region during this process.  

 

 

                       
                (a) t = 15.5 s                     (b) t = 15.9 s                   (c) t = 17 s 

 
Figure 4. The visualization results of the three phases: (a) before (b) during and (c) after the 

boundary condition changes. 



CONCLUSIONS 

 

This study aims to develop a methodology to identify and localize nonlinearity 

events during boundary condition changes using shake table tests with a frame 

structural model. The proposed method employs the Farneback optical flow 

algorithm and the repulsive force model to extract and characterize the nonlinearity. 

First, the video sequence frames are processed by the Farneback optical flow 

algorithm to obtain the velocity vector field. Second, the repulsive force network 

between two pixel nodes is determined using a certain condition. The strength of each 

node in the network is used to construct a two-dimensional feature matrix. Finally, 

the nonlinearity events are visualized and localized based on this matrix. The results 

demonstrate that the proposed method can successfully identify the nonlinearity 

events during the boundary condition change process. However, the presence of other 

highlight parts (background and the edge of each floor of the model) reduces the 

identification accuracy. In future work, the second-order difference method is 

explored to address this issue. In addition, the time at which the nonlinearity event 

occurs is also crucial information regarding the extent of the damage. Therefore, the 

identification of singularity time will also be investigated. Finally, real-world disaster 

video data of structures will be analyzed to verify the effectiveness of the proposed 

method. 
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