
ABSTRACT 

Carbon fiber reinforced plastics (CFRP) is a kind of lightweight composite material 
widely used in aerospace. Since the progressive development of fatigue damage is 
complex and leads to potential safety risks in CFRP structures, structural health 
monitoring based on Lamb wave has been developed to track the growth of fatigue 
damages using a sensor network attached to the surface, which is experimentally 
intensive and expensive. To overcome the above challenges, a composite fatigue 
damage diagnosis method based on deep transfer learning is proposed to transfer the 
physical mechanism provided by numerical models to the diagnosis of real monitoring 
data. Firstly, numerical models of the composite structures are built to indicate the 
accumulation of fatigue damage during the full life cycle by introducing delamination 
between three sub-structures of cross-ply laminates. Then simulation signals with high 
fidelity are generated by virtual sensors and input into a data-driven diagnostic model 
with monitoring data. By aligning the data distribution of corresponding categories in 
simulation and experiment datasets respectively, the sub-domain adaptation is 
implemented and the physical mechanism provided by digital models is thereby fused 
with monitoring data. In this situation, the diagnostic model can still achieve more than 
81% accuracy on a smaller training set, which performs better than conventional 
methods and significantly reduces the number of aging experiments. 

INTRODUCTION 

Carbon fiber reinforced plastic (CFRP) is a lightweight composite material with 
excellent mechanical properties, which is therefore widely used in the aerospace 
industry in the form of laminates [1]. Since the in-plane anisotropy of laminates leads 
to complex fatigue damage modes in composite structures, structural health monitoring 
(SHM) is developed to monitor internal damage by Lamb wave technology. Although 
the low scatter energy in long-distance propagation makes Lamb wave well suited for 
plate detection, its inherent frequency dispersion and multi-mode make it still challeng- 
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ing to extract effective information for fatigue damage from monitoring signals [2].  

Conventional damage detection methods based on physics usually concentrate on 

the wave packet of the S0 and A0 mode [3] which are normally obtained at the cut-off 

frequency, and define features to quantify the influence of defects on guided wave 

propagation. These features include amplitude attenuation, power spectral density 

change (∆PSD), scattered energy, time of flight (ToF), phase shift, and so on [4, 5]. 

Taking the quantitative indexes of fatigue damage and these features as independent 

variables and dependent variables respectively, the damage index models [6, 7] can be 

established by statistical methods and output diagnosis results based on physical laws. 

These physical models work effectively in the lab with a controlled environment, but 

obtaining pure S0 or A0 mode wave packets from real-world structures for feature 

extraction is usually not feasible. In addition, it is also difficult to define a general 

damage feature or combination that is suitable for most ply orientations. 

With the miniaturization design and implementation of sensor technology for SHM， 

it is quite convenient to acquire monitoring data for intelligent damage diagnosis and 

location using data-driven methods. Through manual feature engineering or automatic 

feature extraction, data-driven methods including machine learning (ML) models [8] 

and deep learning (DL) methods [9] can easily learn information related to defects from 

massive training data, although they may not have interpretability in the real world. 

These features not only include the damage indexes with physical meanings but also 

statistics calculated in the time domain, frequency domain and time-frequency domain 

of raw signals in most research [10, 11], such as skewness, kurtosis, divergence and so 

on. To improve the usability of features, correlation analysis is also applied to screen 

more important items, such as the Pearson correlation coefficient [12]. Whether ML or 

DL methods, their excellent performance requires a huge amount of training data 

support. However, due to cost and labor considerations, monitoring data obtained 

through experiments is usually limited and insufficient to train well-generalized models, 

especially the paucity of damage-related data. 

To solve the above challenges, a deep transfer learning-based method is proposed 

to generate life cycle monitoring data of composite structures using finite element 

methods, which provide diagnostic-related knowledge for the diagnosis of real 

monitoring data. According to actual damage areas in X-rays, delamination damage is 

injected into models by dividing laminates into three sub-structures, where the 

propagation of Lamb wave is captured by sensors and output as simulation signals. Then, 

data from simulations and experiments are regarded as source and target domains by 

converting them into images. By aligning the distribution of the subdomains 

corresponding to each category, the subdomain adaptation is implemented to learn 

diagnostic knowledge from the source domain and then transfer it to the target domain. 

Based on the monitoring data provided by the accelerated aging experiment, a case 

study was carried out to verify its effectiveness. 

The rest of the article is organized as follows. Section “METHODOLOGY’’ 

presents the framework of the proposed diagnostic method, including the strategy for 

generating high-fidelity signals in the source domain and the mathematical principle of 

building a deep subdomain adaptation network for fatigue damage diagnosis in the 

target domain. The validation of the proposed method is provided in the section “CASE 

STUDY” where the technical details are shown. Finally, the conclusion and future work 

are summarized in the section “CONCLUSION”. 



METHODOLOGY 
 

Based on deep transfer learning, a diagnostic method for fatigue damage of 

composite structures is proposed in this study, which aims to improve the resistance of 

pure data-driven model to the performance degradation caused by the lack of damage 

samples. This method consists of three modules, which are responsible for numerical 

simulation, automatic feature extraction and defects diagnosis and location. For the 

numerical simulation model, finite element models of CFRP laminates are established 

to generate the simulation data under different damage conditions. By introducing 

delamination defects with different locations and contours into the model, the run-to-

failure monitoring data of structures can be obtained by virtual sensors in the numerical 

model. Then, these simulation data and experiment data are regarded as source domain 

and target domain respectively. The continuous wavelet transform (CWT) is applied to 

convert signals into time-frequency graphs as input of feature extraction module and a 

backbone network based on convolutional neural network (CNN) is constructed to learn 

feature representation from input data. Due to the inevitable discrepancies between the 

simulation model and physical entity, the obtained features are regarded as two domains 

with different data distributions, but holding certain similarities. Therefore, a deep 

subdomain adaptation network (DSAN) is adopted to leverage the similarity by aligning 

the distributions of sub-domains corresponding to each category. After the physical 

mechanism provided by finite element models is fused with experiment data by 

subdomain adaptation, a discriminative classifier can be learned to generalize well from 

simulation data to target domain experiment data. Finally, the performance of the fatigue 

damage diagnosis model is improved when the damage data for training is lacking. 
 

 

Numerical Simulation of Lamb Wave Propagation in Delaminated Laminates 
 

As shown in Figure 1(a), the active sensing system for Lamb wave propagation consists 

of pairs of actuators and sensors attached to CFRP laminates, which induce Lamb waves 

propagating in the substrate material and then receive them as output signals. According 

to the equations of motion of domains defined in Figure 1(a) and Gauss’s law for 

electricity, governing partial differential equations of Lamb wave propagation in an 

active Lamb monitoring system is determined. And finite element method (FEM) is 

adopted to provide the approximate solution for structures in the baseline condition. 

Then simulated delamination inside the CFRP plate is introduced into the FEM models. 

For the selected composite sample with ply orientation shown in Figure 1(b), interfaces 

between +45 and -45 layers are proven [5] to induce delamination defects. Hence, the  

 

 
Figure 1. (a) Domain definition of the active sensing system. (b) The architecture of Layup 2 with 

delamination interface. (c) Simulated defects in the FEM model. 



cross-ply structure simulated in the model is divided into three sub-structures by 

delamination interfaces, including the upper part [45/902/0], the mid part [-45/902/-45] 

and the bottom part [0/902/45]. In the baseline condition, these parts are bonded by tie 

constraint to form the entire laminate. Once a new delamination area is indicated in the 

X-ray images obtained with the experiment data, constraints on the corresponding 

interfaces in the model will be removed to simulate the growth of defects. By matching 

the simulated defects with experiment records, the finite element model can output 

simulation data containing any defect regions via virtual sensors and provide us with an 

additional simulation dataset containing sufficient monitoring data. 

 

 

Fatigue Damage Diagnosis Based on Deep Transfer Learning 
 

Since monitoring data from simulations and experiments are regarded as the source 

domain = {𝐱𝑖
𝑠, 𝑦𝑖

𝑠}𝑖=1
𝑛𝑠  and target domain = {𝐱𝑗

𝑡}𝑗=1
𝑛𝑡  respectively, an end-to-end 

damage diagnosis model based on DSAN [13] is introduced to learn diagnostic 

knowledge from 𝒟𝑠 and then transfer to 𝒟𝑡. As shown in Figure 2, the feature extraction 

𝐺𝑓 and the defect classifier 𝐺𝑐 form the DSAN. Raw signals are firstly converted into 

CWT graphs and then input into 𝐺𝑓 using a backbone network based on ResNet-50 to 

indicate fatigue damages in 𝒟𝑠 and 𝒟𝑡, respectively. Then 𝐺𝑓(𝑥𝑖
𝑠) and 𝐺𝑓(𝑥𝑗

𝑡) are input 

into 𝐺𝑐 made up of three fully connected layers to predict whether there are defects in 

sensor paths. The optimization goal for DSAN consists of the classification loss 𝐿𝑜𝑠𝑠𝑐𝑙𝑠
𝑠  

and the domain adaptive loss 𝐿𝑜𝑠𝑠𝐷𝐴, which can be formulated as: 
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where 𝐽(∙,∙) is the classification error for 𝒟𝑠  using a cross-entropy loss function and 

𝑑̂𝑙(∙,∙) is the estimation of the discrepancy between distributions of 𝒟𝑠 and 𝒟𝑡 using the 

local maximum mean discrepancy (LMMD). 𝜆 denotes the trade-off hyperparameter 

tuned during the training. As a non-parametric distance estimate, LMMD further 

subdivides the global domain shift of 𝒟𝑠 and 𝒟𝑡 into the distribution discrepancy of  
 

 
Figure 2. The architecture of the deep subdomain adaptation network. 



corresponding subdomains to achieve more accurate domain adaptation. Specifically, 

given the input data sample (𝐱𝑗 , 𝐲𝑗), its weight belonging to class 𝑐 can be computed 

by𝜔𝑖
𝑐 = 𝑦𝑖𝑐 ∑ 𝑦𝑗𝑐(𝐱𝑗,𝐲𝑗)𝜖𝒟

⁄ , where 𝑦𝑖𝑐 is the 𝑐th entry of label vector 𝐲𝑗. Since training 

data of 𝒟𝑡 is unlabeled, real labels 𝐲𝑠 of 𝒟𝑠 and prediction labels 𝐲̂𝑡of 𝒟𝑡 are used to 

calculate 𝜔𝑖
𝑠𝑐 and 𝜔𝑗

𝑡𝑐, respectively. Then the LMMD can be formulated as: 
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where 𝐳𝑙 are the activations generated by 𝑙th layers in 𝐺𝑐 and 𝑘(∙,∙) is the inner product 

of vectors mapping raw samples to the reproducing kernel Hilbert space (RKHS).  
 

 

CASE STUDY 
 

The full-life monitoring data of CFRP laminates provided by accelerated aging 

experiments are leveraged to carry out a case study to validate the proposed approach 

[14]. Among the coupons laminated with three symmetric layup configurations, ply 

orientation of the Layup 2 ([0/902/45/-45/90]s) is the most complex and has been 

proven to reduce the diagnostic performance of pure data-driven methods. In 

addition, according to the experiment logs [14], sensors of some samples failed in the 

later stage of fatigue loading resulting in insufficient monitoring data for analysis, 

such as L2S18. Therefore, L2S18 was selected to discuss the generality of proposed 

method. 
 

 

Run-to-Failure Simulation Data Generated by FEM 

 

Based on the actuation frequency selected for data processing [9], actuators in FEM 

models use a 150kHz standard five-tone-burst signal as the electrical boundary 

conditions of top surfaces while the bottom of all PZT sensors is set to 0 V as the ground. 

To simulate the clamping constraint imposed by MTS on the coupons in experiments,  
 

 
 

Figure 3. (a) The mesh in the FEM model. (b) Lamb wave propagation in CFRP laminates. (c) 

Comparison between simulation and experimental signals at the actuation frequency of 150 kHz. 



 
 

Figure 4. Simulated delamination area in laminates with the increase of loading cycles. 

 

fixed mechanical boundary conditions were applied to both ends of laminates. As shown 

in Figure 3(a), the 4-node doubly curved thin shell elements, C3D8E elements and 

C3D8R elements were assigned to the laminates, PZT sensors and the adhesive layer, 

respectively. Since the wavelength of the fastest wave mode at an actuation frequency 

of 150 kHz is 0.03 m, the mesh size for the laminates, PZT sensors and adhesive layers 

were set to 0.8 mm, 0.5mm and 0.2 mm, respectively. Then, ABAQUS 6.12 is used to 

simulate the particle motion in the CFRP Laminate by providing a dynamic implicit 

analysis. As shown in Figure 3(b), Lamb waves are actuated at the location of the 

actuator and then propagate toward sensors. When these mechanical waves are captured 

by virtual sensors, they are converted into electrical signals through the converse 

piezoelectricity and output as a simulation result as shown in Figure 3(c). Compared 

with the real experimental signal, the simulation signal output by the FEM model 

matches well with the experiment data on the first wave packet representing the S0 

mode. In addition, their envelope lines can also be basically matched. 

After matching FEM models with experimental signals in baseline condition, 

delamination is introduced to simulate the accumulation of fatigue defects under fatigue 

loadings. As shown in Figure 4, the fatigue delamination damage is induced at the notch 

and expands with the increase of loading cycles, whose outline is determined according 

to the ground truth in X-ray images. A total of 13 finite element models are built to 

generate simulation signals with loading cycles ranging from 5×104 to 1.25×106, which  
 

 
 

Figure 5. The training process of DSAN. (a) Training loss. (b) Accuracy curves. 



provide us with new full life cycle monitoring data. Since sensor paths including path 

5-7, 6-7, and 6-8 passing through the notch area, 33 Lamb signals were generated per 

model, except for channels 6-8. 
 

 

Result of Fatigue Damage 
 

Except for signals corresponding to path 5-7, 6-7 and 6-8 that pass through the 

notch area, all the Lamb signals obtained from experiments and simulation were 

converted into CWT images which constituted 𝒟𝑠 and 𝒟𝑡, respectively. To simulate 

the general process of using historical monitoring data in practical scenarios, transfer 

tasks based on existing experimental results were designed to diagnose fatigue 

delamination. Take T-C150k as an example, the training data includes all the labeled 

simulation data in 𝒟𝑠 and 3×33 unlabeled signals in 𝒟𝑡 corresponding to experiment 

data collected under 0, 5×104 and 105 cycles. Then, the remaining experiment data 

collected from 1.5×105 cycles are used to evaluate the diagnostic model as the testing 

set. The Resnet-50 was selected as the backbone to train the DSAN model shown in 

Figure 2 and the initial learning rate was set as 0.001 followed by a cosine decay 

strategy. As observed from Figure 5(b), the accuracy of the source domain is always 

close to 100% during the training process, which indicates the excellent feature 

extraction capability of the backbone network. As the decreasing of total loss, the 

accuracy of the target domain gradually increases and reaches its optimum at 30 

epochs.  

To further compare the conventional data-driven approach, DCNN was also trained 

with the same setup and their confusion matrixes for 𝒟𝑡 is shown in Figure 6, where D 

indicates that sensor paths pass through the delamination area and are regarded as 

damage condition while H represents the opposite. Since the lack of training data, 

DCNN was unable to accurately classify data labeled as D, resulting in poor overall 

recognition performance. While DSAN learned better discriminant ability from a large 

amount of simulation data and transferred it to the classification of 𝒟𝑡 by implementing 

subdomain adaptation. Hence, the proposed method achieves a performance 

improvement of more than 13% with limited training data. Finally, based on the 

condition of each sensor path output by DSAN, the localization method [9] that we have 

already proposed was used to identify the exact location of delamination defects. As 

shown in Figure 6(c), the area surrounded by white lines is the result of localization, 

which basically matches the real region of delamination shown in X-rays. 
 

 
 

Figure 6. Confusion matrixes of transfer task T-C150k using (a) DCNN, (b) DSAN and (c) localization 

result of DSAN. 



CONCLUSION 
 

This study proposes a new fatigue damage diagnosis method using deep transfer 

learning, which requires only a small amount of unlabeled experiment data to achieve 

more than 81% accuracy. By dividing the laminated plate into three sub-structures, the 

delamination is introduced into the finite element model to simulate the accumulation 

of fatigue damage in CFRP laminates and generate the run-to-failure simulation data. 

Then, the DSAN model is constructed to learn diagnostic knowledge from large 

simulation data in volume and transfer it to the application of experiment data by 

aligning the distribution of subdomains. Monitoring data provided by accelerated aging 

experiments are used to implement the case study proving the proposed method to 

achieve a performance improvement of over 13% with limited training data. Future 

work will focus on improving the fidelity of simulation results and the accuracy of 

transfer learning models. 
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