
The Road to an Open and Secure Data 
Exchange Infrastructure for SHM 
 

HORST TRATTNIG and LUKAS BERBUER 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ________________ 
Vallen Systeme GmbH, Buergermeister-Seidl-Straße 8, 82515 Wolfratshausen, Germany 



ABSTRACT 

 

Today, structural health monitoring systems consist of various hardware and software 

components that are not always well synchronized. The paper emphasizes the need and 

challenges to synchronize multi time-domain and multi physical-phenomena data 

acquisition systems. 

On the way from a raw data sensor system to an independent decision-making edge 

device, there are still some challenges to be solved along the way. Identifying and 

combining technologies from foreign domains is the focus of the journey. Open and 

standardized communication protocols like OPC UA or MQTT are already well-

established technologies with a high level of security. These communication protocols 

allow users to discover and receive structured data from compatible sensors and edge 

devices in the network. Moving the data processing and decision-making further to edge 

leads to reduced data transfer volume, lower latencies and improved privacy, security, 

and cost-effectiveness. This requires an extensible platform to embed custom feature 

extraction algorithms and to deploy trained machine learning models. ONNX, the open 

standard for machine learning interoperability, is a further puzzle piece on this journey. 

The paper shows the status of work, ongoing developments in the open standard 

community like OpenAE and platform strategies for advanced analytics and AI. 

 

 

MOVING TOWARDS DISTRIBUTED EDGE DEVICES 

 

Today, structural health monitoring systems are large baskets of hardware and 

software components, scattered over the structures and are barely synchronized. If it 

comes to dynamic signals, known as “structure-born sound” or “acoustic emission” 

(AE), data processing chains are even more complex and demanding. The effort to 

synchronize multi time-domain and multi physical-phenomena data acquisition systems 

is a huge challenge. Sensors are on a transition from simple data sources to configurable 

and scalable edge devices – also defined as smart sensors [1][2]. They combine sensing, 

data processing, analysis, decision-making and communication capabilities. 

By integrating data acquisition and processing into a single device, intelligent 

sensors eliminate the need for complex and resource-intensive data processing 

architectures, resulting in more efficient and streamlined data collection processes. The 

key benefits are: 

 

1. Reduced latency: Edge processing enables real-time data analysis and decision-

making at the source. By processing data locally, smart sensors can minimize 

latency and respond quickly to events or triggers. This is particularly crucial in 

time-sensitive applications, such as industrial automation, where immediate 

action is required based on sensor data. 

2. Bandwidth optimization: Smart sensors often generate a significant amount of 

data. Moving computations and intelligence further to the edge reduces the 

amount of data transfer volume – which, in case of acoustic emission, can be 

intense (20 MB/s for 10 MHz à 16 bit). By extracting and transferring only 

relevant signal features, the data rate can be reduced to less than 1 MB/s. This 

optimization of data transmission minimizes bandwidth requirements, reduces 

network congestion, and lowers communication costs. 



3. Enhanced privacy and security: Edge processing helps address privacy and 

security concerns related to sensitive data collected by smart sensors. Instead of 

transmitting raw data to external systems, edge processing allows for local data 

analysis, ensuring that sensitive information remains within the controlled 

environment of the edge device. This approach reduces the exposure of sensitive 

data to potential security breaches, enhances data privacy, and supports 

compliance with privacy regulations. 

4. Offline operation and resilience: Edge processing enables smart sensors to 

operate autonomously even when connectivity to the central system or cloud is 

disrupted. By processing data locally, smart sensors can continue to perform 

critical tasks and make local decisions, ensuring system operation and resilience 

in environments with intermittent or unreliable network connectivity. This 

capability is particularly valuable in remote or harsh environments where 

continuous connectivity may not be guaranteed. 

5. Real-time decision-making: Edge processing empowers smart sensors to make 

immediate decisions based on local data analysis. By embedding processing 

capabilities within the sensor itself, it can react to sensor readings without 

relying on external systems for analysis. This enables faster response times and 

enables smart sensors to trigger actions or alerts promptly, enhancing the overall 

efficiency and effectiveness of the system. 

6. Scalability: Edge processing facilitates the scalability and distributed 

architecture of smart sensor networks. As the number of smart sensors increases, 

edge devices can handle processing tasks locally, distributing the computational 

load across the network. This decentralized architecture supports the scalability 

and flexibility required for large-scale deployments, allowing for the addition of 

new sensors without overwhelming the central system or cloud infrastructure. 

7. Energy efficiency: Edge processing can contribute to energy efficiency in smart 

sensor applications. Frequent data transmission and unnecessary 

communication is avoided, leading to lower power consumption. 

 

Communication protocols 

 

Open and standardized communication protocols like OPC UA (Open Platform 

Communications Unified Architecture) or MQTT (Message Queuing Telemetry 

Transport) are already well-established technologies for efficient, reliable and secure 

data exchange in industrial applications. They can bring several benefits to AE systems, 

enhancing their capabilities and integration with industrial automation environments. 

OPC UA is used in various industries and applications where secure and 

interoperable communication between devices and systems is required [3]. OPC UA 

incorporates robust security mechanisms, including encryption and authentication, 

which are crucial for protecting sensitive AE data. By leveraging OPC UA's security 

features, AE systems can ensure the confidentiality, integrity, and availability of data 

during transmission, preventing unauthorized access or tampering. OPC UA allows the 

creation of a standardized information model that defines the structure, properties, and 

behavior of AE data. This modeling capability ensures consistent representation of AE 

data across different systems and facilitates data interpretation and analysis. 



MQTT is a simpler, lightweight publish-subscribe messaging protocol that operates 

on top of different network protocols. It enables efficient and reliable data exchange 

between IoT devices, sensors, gateways, and cloud platforms. 

 

 

CASE STUDY: AE EDGE DEVICE 

 

Edge processing is particularly sensible for acoustic emission (AE) devices due to 

the high data rates associated with AE monitoring. The high sampling rates of e.g. 

10 MHz lead to data rates of 20 MB/s per channel. The amount of data can be reduced 

drastically if the data processing (mainly feature extraction) is moved towards the edge 

and only relevant signal features are transmitted. As shown in Figure 1, following 

integration use-cases can be derived from a common acoustic emission data pipeline: 

 

1. Use case A: The AE system is used as a data acquisition unit and all data is 

transferred to a host PC (connected via USB or Ethernet). This is the traditional 

(centralized) approach. 

2. Use case B: Signal features are computed directly on the device and transmitted 

via OPC UA or MQTT. Feature extraction involves identifying and selecting 

specific attributes or patterns from a signal that are relevant to a particular task 

or analysis. This approach makes sense, if the AE data must be merged with 

other sensor data for a combined evaluation and decision-making. 

3. Use case C: Decision can be made solely based on AE signals/features. Trained 

machine learning models are deployed on the device for inference at the edge. 

Only the outputs of the model (and optionally the features) are transmitted via 

OPC UA or MQTT. 

 

 
Figure 1. Integration use-cases of an acoustic emission edge device. 

 

 

AE

sensor(s)

AE edge device

Digitizing &

filtering

Feature 

extraction
Inference

Preprocessed

signal Features Information

Analog

signal

TCP/IP

Use case C

Intelligent IoT edge device, AE-based decisions

Use case B

Sensor data fusion & centralized evaluation

Use case A

Acquire and process raw data



Challenge 1: Application-specific feature extraction algorithms 

 

Feature extraction techniques in acoustic emission analysis can vary depending on 

the specific application and the characteristics of the signals being analyzed. Common 

methods include time-domain analysis (amplitude, duration, rise time, zero crossings), 

frequency-domain analysis (spectral centroid, bandwidth), time-frequency analysis 

(STFT, wavelet transforms), statistical features (variance, skewness, kurtosis) 

waveform/envelope analysis and pattern recognition algorithms [4][5][6][7]. These 

techniques aim to transform the raw acoustic emission data into a set of informative 

features that can be used for further analysis, classification, or anomaly detection. 

An AE edge device with integrated feature extraction must be flexible and allow 

users to embed their own algorithms. A possible solution can be a plugin system like 

Vamp1. Vamp is a well-established audio processing plugin system that provides a 

standardized interface for analyzing audio data, but can also be used for AE and 

structure-borne sound signals. It allows developers to create plugins in C/C++ that can 

extract various types of information from signals. A lot of common algorithms are 

already implemented as Vamp plugins and available for download. Vamp plugins can 

also be used in Python environments2. 

 

Challenge 2: Machine learning interoperability 

 

Machine learning models can be developed and trained in various frameworks, for 

example TensorFlow, PyTorch, Caffee, MATLAB, MXNet or Scikit-learn. How can 

those models be deployed on an edge device in a framework-agnostic manner? 

ONNX 3, the open standard for machine learning interoperability, is a further puzzle 

piece on this journey. ONNX is an open format designed for representing machine 

learning models [8][9]. ONNX describes a model using a computational graph that 

represents the model's structure and operations. The computational graph is composed 

of nodes and edges, where nodes represent operations or computations, and edges 

represent the flow of data between nodes. ONNX allows models trained in one 

framework to be used in another framework without the need for extensive model 

reimplementation or conversion. Models saved in the ONNX format can be deployed 

and executed on a variety of platforms and devices, including cloud servers, mobile 

devices, edge devices, and specialized hardware accelerators, e.g. by using the ONNX 

runtime by Microsoft4 (see Figure 2). 

 

 
1 Vamp (https://vamp-plugins.org). An open-source C++ SDK suitable for real-time applications is 

available via GitHub (https://github.com/lukasberbuer/rt-vamp-plugin-sdk). 
2 Vamp host Python bindings (https://pypi.org/project/rtvamp) 
3 ONNX (https://onnx.ai) 
4 ONNX Runtime (https://onnxruntime.ai) 

https://vamp-plugins.org/
https://github.com/lukasberbuer/rt-vamp-plugin-sdk
https://pypi.org/project/rtvamp
https://onnx.ai/
https://onnxruntime.ai/


 
Figure 2. Machine Learning model interoperability with ONNX (by https://microsoft.com) 

 

Overall, ONNX simplifies the process of model development, deployment, and 

collaboration by providing a common format that bridges the gap between different 

frameworks, tools, and deployment environments in the machine learning ecosystem. 

 

Challenge 3: Mapping of features and model inputs 

 

 
Figure 3. Mapping of features and model inputs with ONNX. 

 

The inputs of the machine learning model must be mapped to the computed features 

– the feature vector (see Figure 3). This task is easy, if both the features and the model 

are developed and deployed in the same environment, e.g. with Python or MATLAB. 

If the model is exported as an ONNX model and deployed on another target, the input 

processing must be reproduced on the target device and mapped correctly to the model 

input. Otherwise, the model yields garbage data. ONNX provides named, typed and 

dimensioned inputs and outputs to simplify the mapping. Additionally, custom metadata 

can be stored in a model with additional setup information, e.g. in JSON format. This 

can be used to store the information of the full processing pipeline in the model: 

Acquisition settings, digital filters, FFT settings and the used feature extraction 

algorithms with its parameters. 

 

ONNX model

Custom
metadata

{}

Feature extraction

RMS

Kurtosis

Spectral centroid

Counts

Band energies

Signal

SC
Float [1]

RMS
Float [1]

Kurt
Float [1]

Cnts
Int32 [1]

BE
Float [3]

OK
Bool [1]

Inputs Outputs

Mapping

Conf
Float [1]

https://microsoft.com/


 

FURTHER CHALLENGES AND GOALS 

 

How can we facilitate advanced signal analysis and machine learning for acoustic 

emission applications? What do we need to utilize modern techniques like transfer 

learning and build monitoring solutions by using and adapting already existing models? 

Transfer learning is a common practice in other domains like computer vision. With 

the rise of deep learning, modern computer vision models directly use the raw image 

data as the input without relying on handcrafted features or explicit domain knowledge. 

Only minor pre-processing (resizing, normalization and color space transformation) of 

the images is necessary to feed them into the deep learning model. Specific models can 

be built by utilizing a pre-trained model, such as ResNet, that has been trained on a 

large-scale dataset like ImageNet, which contains millions of images across various 

categories. Only the last layers (classification layers) of the model have to be re-trained 

for the new task. This approach allows the model to benefit from the large-scale pre-

training dataset, even with limited labeled data. Overall, transfer learning accelerates 

training, improves model performance, and enhances generalization on the target task. 

The world of SHM and AE-based monitoring is very different. Data sets of failure 

cases are usually rare and not sufficient to train models with the raw sensor data directly 

(deep learning). Instead, handcrafted features and domain knowledge are necessary to 

utilize machine learning. Overall, the signal path from the sensor to the decision-making 

is influenced by a lot of factors (Figure 4): 

a) structure and dispersion 

b) sensor sensitivity and mounting 

c) acquisition settings, e.g. digital filters 

d) feature extraction algorithms and parameters 

 
Figure 4. AE data and machine learning pipeline. 

 

Time and frequency feature extraction is a crucial element in the signal path. 

Features like spectral centroid, band powers or ASL are widely used, but can differ in 

implementation details. Consequently, models fed with those features yield other results 

depending on the implementation of the mathematical algorithm. 

Se
n

si
ti

vi
ty

C
o

u
p

lin
g

Sensor DAQ

Fr
eq

 r
an

ge
D

is
p

er
si

o
n

In
p

u
t 

ra
n

ge

Fi
lt

er

A
cq

se
tt

in
gs

Feature 
Extraction

P
re

-p
ro

ce
ss

in
g

A
lg

o
ri

th
m

s

P
ar

am
et

er
s

Standards
EN13477-1: Equipment
EN13477-2: Verification No standards yet



We want to address this challenge with OpenAE5, a community-driven project to 

empower data-based acoustic emission and structure-born sound applications (see 

Figure 5). The first goal is to build an open standard of feature algorithm definitions 

including reference implementations. Each feature is identified by a URI and a version. 

The model can use those identifiers to unambiguously specify its inputs. With reference 

implementations in different programming languages, those exact features can be 

computed in different environments and on different targets. Trained models based on 

those standardized features can be shared in the model zoo to be either reused in similar 

applications or new applications by utilizing transfer learning. GitHub is used as the 

main platform to allow easy and transparent collaboration between researchers, students 

and engineers. To join us and become part of the community, visit openae.io. 

 

 
Figure 5. OpenAE building blocks for transferable AE analysis and models. 

 

 

REFERENCES 

 
1. Berns, K., Köpper, A., Schürmann, B., Berns, K., Köpper, A., & Schürmann, B. (2019). 

Sensordatenverarbeitung. Technische Grundlagen Eingebetteter Systeme: Elektronik, Systemtheorie, 

Komponenten und Analyse, 237-264. 

2. Tränkler, H. R. (2014). Einführung in die Sensortechnik. Sensortechnik: Handbuch für Praxis und 

Wissenschaft, 3-20. 

3. Leitner, S. H., & Mahnke, W. (2006). OPC UA–service-oriented architecture for industrial 

applications. ABB Corporate Research Center, 48(61-66), 22. 

4. Eyben, F. (2015). Real-time speech and music classification by large audio feature space extraction. 

Springer. 

5. Müller, M. (2015). Fundamentals of music processing: Audio, analysis, algorithms, 

applications (Vol. 5). Springer. 

6. Caesarendra, W., & Tjahjowidodo, T. (2017). A review of feature extraction methods in vibration-

based condition monitoring and its application for degradation trend estimation of low-speed slew 

bearing. Machines, 5(4), 21. 

7. Sause, M. G. (2016). In situ monitoring of fiber-reinforced composites: theory, basic concepts, 

methods, and applications (Vol. 242). Springer. 

8. Jajal, P., Jiang, W., Tewari, A., Woo, J., Lu, Y. H., Thiruvathukal, G. K., & Davis, J. C. (2023). 

Analysis of Failures and Risks in Deep Learning Model Converters: A Case Study in the ONNX 

Ecosystem. arXiv preprint arXiv:2303.17708. 

9. Shridhar, A., Tomson, P., & Innes, M. (2020, August). Interoperating Deep Learning models with 

ONNX. jl. In Proceedings of the JuliaCon Conferences (Vol. 1, No. 1, p. 59). 

 

 

 
5 https://openae.io, https://github.com/openae-io 

Open Standard for
Feature Extraction Algorithms

Reference
Implementations

Model
Zoo

https://openae.io/
https://openae.io/
https://github.com/openae-io



