
ABSTRACT 

This paper introduces a methodology that combines a physics-based model with 
observed data for accurately modeling the deflection of an elastic beam in the context 
of structural health monitoring. The challenges associated with physics-based and data- 
based methods such as computational time, simplifying assumptions, and seamless 
integration of sensor data with physics-based models are addressed. The presented 
method offers a promising approach by effectively fusing data with prior physical 
knowledge in a cost-effective manner. The proposed methodology is validated through 
comparisons with analytical and finite element analysis methods for beams with various 
irregularities such as point loads and supports. The results demonstrate the advantages 
of integrating sensor data into the model for faster convergence and improved accuracy. 

INTRODUCTION 

The core of structural health monitoring (SHM) research lies in utilizing data 
collected from physical structures. This data provides valuable insights into the behavior 
of structures when subjected to different stimuli, facilitating continuous monitoring, 
prediction, and effective control and performance of structures during their operational 
lifetime [1]. In order to model and analyze complex structural system within the 
framework of SHM, either a data-based or physics-based model can be employed [2]. 

In recent years, data-based models have gained significant attention and are 
increasingly recognized as promising tools, particularly for modeling complex systems 
that involve model uncertainties or are usually presented with simplified relationships. 
Nevertheless, the effectiveness of data-driven modeling techniques heavily relies on the 
quantity and quality of the available data. They typically require a substantial amount 
of data to converge and provide reliable predictions. Another challenge arises from the 
lack of generalizability, as data-driven models may struggle to perform effectively when 
faced with new or unseen conditions. It should be noted that data-based models, despite 
their capabilities, inherently disregard physical laws which causes these issues [3]. 
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Physics-based models provide the advantage of being less dependent on the 

availability of extensive data. They can leverage fundamental physical principles to 

describe the behavior of complex systems. However, these models are often constrained 

by computational complexity and the challenge of accurately representing the full range 

of physics involved in the system. Computational demands and the need for 

comprehensive understanding of the underlying physics can limit the practicality and 

applicability of physics-based models in complex systems. Furthermore, integrating 

data from instrumented structures into physics-based models is challenging. This 

process entails estimating model parameters using measured response data and refining 

these parameters either directly or through iterative methods. Accurate results relies on 

the physics-based model closely resembling the actual response without excessive 

simplifications and on the selection of appropriate parameters for modeling [2]. 

The mentioned approaches have certain limitations that make them less suitable for 

complex structures in uncontrolled environments. This study presents a computationally 

affordable modelling approach for obtaining a representative of a system response that 

balances the information from the observed data and the physics-based model. The 

model utilizes the observed data to improve the physics-based model while guiding the 

model in unmeasured areas of the structural domain. 

 

 

LITERATURE REVIEW 

 

In recent years, there has been significant interest in physics-informed machine 

learning (PIML) [4] and their different variations [1], [5]. These approaches have 

introduced a new paradigm and perspective on fusing machine learning with physics 

knowledge, offering potential solutions to overcome the shortcomings of the mentioned 

methods.   

The integration of physics with machine learning, aiming to bridge the gap between 

data-driven and physics-based approaches, develops diverse methodologies, referred to 

as physics-informed or -guided machine learning methods. When referring to physics it 

means incorporating a mathematical equation that represents the underlying physics of 

the problem. However, these approaches differ in their approaches to integrate observed 

data with the governing physics. One approach involves using physics models to 

simulate data by executing physics-based models across various input combinations for 

training a machine learning model and leverage the embedded knowledge in the physics 

models [6], [7] (Figure 1.a). The second approach, showed in Figure 1.b, resembles 

discrepancy modeling, where a discrepancy term is introduced to compensate for the 

differences between the incomplete/simplified physics and the actual system behavior 

[8]. In this study, the physics-informed neural networks (PINNs) refer to a method that 

integrates the physics law as a penalization term into the loss function, introduced by 

Raissi et al. (2019) [5]. This approach, Figure 1.c represents another means of 

employing PINNs, distinct from the previously discussed methods involving data 

simulation and discrepancy modeling. 

 

 



 

 
Figure 1. Different PINN options to combine physics information and observation data. 

 

 

PINN was investigated by many researchers in the context of structural engineering 

applications, showing promising potential in various areas, including (SHM) [8]. In the 

domain of structural modeling and analysis, the physics-based aspect of the PINN 

incorporates beam theory equations [9] and the equation of motion [8] for single and 

multi-degree freedom systems (SDOF and MDOF). The machine learning component 

employs various networks, such as Artificial Neural Network (ANN) [5], long short 

term memory (LSTM) [10] and convolutional neural network (CNN) [11]. 

In the context of SHM, Yuan et al. (2020) proposed a new framework by integrating 

physics knowledge into loss function of neural network to simulate structural systems 

based on Euler-Bernoulli [3]. There are several studies trying implementing PINNs [9], 

[12] with the beam theory in the context of structural system modeling. However, none 

of them considered irregularities such as point load and supports in beam length. The 

goal of the study is to model the transverse displacement of the beam from integration 

of physics knowledge and the boundary conditions and sensory data to make a seamless 

integration between observed data and the model considering irregularities. 

 

 

PINN ARCHITECTURE AND IMPLEMENTATION 

 

This section provides an overview of the proposed methodology for modeling an 

elastic beam. Initially, the PINN architecture and the training process specific to beam 

modeling are described. Subsequently, the methodology employed to address 

irregularities, such as point loads or supports, along the beams’ length is explained. 

PINNs are trained by minimizing a combination of loss functions. To train the model, 

the mean square error loss for a neural network is minimized, comparing the predicted 

and actual solutions. Furthermore, additional loss terms are introduced to account for 

deviations from established physical laws. The integration of the physical part involves 

formulating the physics equation derived from the neural network. By utilizing 

automatic differentiation (AD), the derivatives of the network outputs, such as 

deflection, with respect to the network inputs, are computed and enables the formation 

of the equation. 

In this research, DeepXDE [13] with a Tensorflow [14] backend was utilized. 

DeepXDE is an accessible PINN solver which handles various types of differential 

equations, including ordinary differential equations (ODEs) and partial differential 

equations (PDEs), and supports complex domain geometries using constructive solid 

geometry. Further details on DeepXDE and its utilization are explained in [13]. 



 

Training procedure of PINN for beams 

 

Euler-Bernoulli beam equation was chosen as the underlying physics equation in 

this study. The equation has been well-established in previous research [9], [12] and 

serves as an appropriate example of incomplete prior knowledge. For the machine 

learning component, a feedforward neural network (NN) with multiple hidden layers is 

employed to approximate the equation's solution. Previous investigations have 

demonstrated that feedforward NNs are effective in solving a wide range of differential 

equations [13]. Euler-Bernoulli equation (Equation 1) models the deflection 

characteristics of beams, 𝑦, in the space domain subject to the transverse loading.  
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The parameter EI is flexural rigidity, 
𝑑4𝑦

𝑑𝑥4 represents the fourth order partial derivative 

of 𝑦 with respect to 𝑥, and 𝑞 is distributed loading. This work considers a uniform cross-

sectioned beam with constant material properties throughout the beam. 

In Figure 2, the utilized PINN architecture for solving the Euler-Bernoulli beam 

equation is illustrated. On the left side, the neural network as a function approximator 

for the solution of the problem is depicted. The right-hand side corresponds to the 

residual of the differential equation, obtained by applying the AD to the neural network 

and encoding the partial differential equation into the algorithm's architecture. At the 

end the loss function is formed by the weighted summation of two parts, having the 

same parameters (weights and biases). There is an extra term added to the conventional 

PINN architecture which will be explained in the next section. The middle section of 

the figure depicts AD which is derived by applying the chain rule to calculate the 

derivatives of the output with respect to the input to determine the losses of equation 

terms, as well as the terms of the high order derivative boundary conditions, such as 

slope and moment. 

 

 

 

Figure 2. Schematic of PINN framework for solution of Euler-Bernoulli beam. 
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By minimizing the loss function of the defined algorithm, the model will be trained, 

which is written in Equation 2. Where 𝑤𝑓 and 𝑤𝑏 represent the weights assigned to the 

differential equation and boundary condition losses, respectively. While it is feasible to 

use different weights for these components, it is assumed that these weights are equal 

for the purpose of this study. 
 

Training PINN for beams with irregularity 
 

When dealing with irregularities along the beam certain considerations come into 

play. Initially, the solution for concentrated loads is explained, and then it is expanded 

to encompass cases involving supports along the beam's length. When the concentrated 

load is applied at an arbitrary location along the beam's span, rather than at the ends, the 

right-hand side of the Euler-Bernoulli beam equation (Equation 1) becomes zero due to 

the concentrated nature of the load. While the deflection is continuous along the beam, 

a discontinuity is created in the third derivative of the deflection, responding to the force. 

To address this scenario, a novel solution inspired by a numerical approach for 

handling beam equations with concentrated loads is proposed. This approach is 

anticipated to yield more generalized solutions. The beam is divided into two segments: 

one to the left of the applied load and the other to the right. For each segment, the 

governing differential equation of the problem is defined using the Euler-Bernoulli 

beam equation with zero distributed loads. Then, a new set of boundary conditions is 

established at the point where the load is applied which are named interface conditions. 

This methodology allows us to address irregularities effectively, providing a versatile 

solution to various scenarios involving concentrated loads or supports. 

In the case of a point load, the deflection, y, and its first and second derivatives 

exhibit continuity at the point load location. However, the force, i.e., the third derivative 

of deflection, experiences a discontinuity equivalent to the magnitude of the point load. 

To account for these conditions, they are incorporated as interface conditions in the loss 

function. Similarly, in the case of supports, while the magnitude of the force is unknown, 

the value of the deflection is known and can be utilized as an additional condition. Thus, 

when irregularities occur, the domain is decomposed. However, decomposition 

resulting in certain costs, which will be elaborated on in the following section. 
 

 

RESULTS AND DISCUSSION 
 

In this section, the linear deflection of an elastic beam with irregularity and different 

boundary conditions is investigated while fusing the sensor data to the model. The 

properties of beams are 𝐸 =  24.9GPa,  𝐼 = 4.5 ∗ 104m4 with the beam length being 

5m. Moreover, in all cases considered, the loadings are 5 ∗ 105N and 5 ∗ 105N/m for 

point and distributed loads, respectively. 
 

 

TABLE I. PINN HYPER-PARAMETERS. 

Parameters No. of training 

points 

Hidden 

layers 

No. of 

node 

Learning 

rates 

Optimizer Activation 

function 

Value 20 3 20 0.0005 Adam Tanh 



 

 
Figure 3. Schematic of the elastic beam with the location of observed data. 

 

 

The neural network architecture and hyperparameters were selected through a 

systematic trial-and-error approach, prioritizing both solution accuracy and 

computational efficiency for all hyperparameters except for the number of iterations, as 

a computational cost indicator for measuring the effect of auxiliary data. All used 

hyperparameters are indicated in Table I. For the number of iterations, the examination 

was conducted up to 150,000 iterations, but beyond 40,000 iterations, the observed 

improvement in solution accuracy was not significant. Similar initial weights and biases 

across all models facilitate a fair and valid comparison when incorporating sensor data. 

The results of models were validated with analytical and finite element analysis 

methods (through Wolfram Mathematica; and SAP2000 and Ansys respectively). 

Figure 3 illustrates the location of data points that are used as auxiliary data representing 

response data collected from sensors on the beam with the coordinates along the x axis 

being [2.5, 0.625, 4.375, 1.25, 3.75, 1.875, 3.125] from 1 to 7 (units are in meter). For 

simulating sensors data, the data extracted from Ansys model is used. 

To assess the accuracy of the trained model, the relative percentage error is 

employed as an error estimation measure. However, instead of considering the error at 

a single midpoint like Kapoor et al. (2023), the cumulative error of 10 points distributed 

along the beam span is utilized. In eq.3 , 𝑢∗ is the prediction and 𝑢 is the actual solution 

[12]. 

 
 

𝐸𝑟𝑟𝑜𝑟 =
𝑢∗ − 𝑢

𝑢
∗ 100 

(3) 

 

The study investigated two types of irregularities in the beam. The first being the 

presence of point loads or supports along its length, which can complicate beam 

modeling. Beams with different point loads and support conditions are tested. 

Additionally, beams with both clamped and hinged supports were modeled to showcase 

the capability of PINN under different boundary conditions. Initially, all the models are 

trained solely using boundary conditions, and subsequently, actual data is incorporated 

into the models. Figure 4 depicts the comparison between the error (deviation from 

actual behavior) and the number of iterations (shown in logarithmic scale), which serves 

as an indicator of computational cost. 

The results of the comparison demonstrate that incorporating sensor data into the 

model aids in faster convergence towards the solution. For example, when considering 

three-point loads and running 1000 iterations, the addition of a single data point reduces 

the error by 75%. However, when examining the effect of adding sensor data on 

reducing error with fewer iterations, no clear trend emerges, necessitating further 

investigations. Additionally, it is observed that irregularities with supports result in 

higher errors, potentially attributable to the more complex shape associated with such 

irregularities. 



 

  

  

  

  
 

Figure 4. Comparison of beam accuracy with added sensor data to the trained model. 

 

 

CONCLUSION 

 

This paper has presented a physics-informed neural network model that fuses 

together information from a physics-based model and observed data for modeling the 

deflection of an elastic beam. The observed data collected from sensor networks, as the 

response of beam, can be in the form of stress, vibration/acceleration/moment, slope, 

and deflection. The presented method eases the utilization of measured data from 

structure into physics-based model. 

The main challenges in structural analysis and modeling in the context of SHM 

encompass computational time and incorporating too many simplifying assumptions. 

Moreover, integrating sensor data with physics-based models poses limitations due to 

the lack of seamless integration. On the other hand, acquiring enough data is challenging 

and expensive. However, Physics-Informed Neural Networks (PINNs) offer a 

simulation-based, computationally efficient, and cost-effective alternative by 

effectively integrating incomplete or noisy information with existing physical 

knowledge. 
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