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ABSTRACT 
 

The emergence of Unmanned Underwater Vehicles (UUVs) as tools for underwater 
inspection tasks presents promising potential. This study presents a novel automatic 
damage detection framework in large-scale underwater structures using a physics-based 
graphics model (PBGM). A high-fidelity finite element model of the Greenup Miter 
gate on the Ohio River is utilized to provide the fundamental information for the 
graphical model development. An open-source software is used as a graphic-based 
observational system to render images given different inspection distances and 
environmental conditions, such as light conditions and water quality. A deep neural 
network for crack detection with segmentation from the existing literature is adopted 
and then trained using transfer learning, adapting it to the unique conditions of 
underwater circumstances. Results indicate that the proposed method provides high- 
accuracy damage detection amidst the unique background noise and uncertainties 
presented in the underwater environment, contributing significantly to the field of UUV 
inspection of large-scale structures. 

 
 

1. INTRODUCTION 

The emergence of Unmanned Underwater Vehicles (UUVs) as tools for underwater 
inspection tasks has gained increasing attention recently [1-2]. Equipped with an array 
of sensors, including lidar and/or video/photogrammetry, UUVs can significantly 
augment our ability to inspect and understand large-scale, complex structures with 
substantial underwater footprints, such as miter gates. However, the interpretation of 
video/photo-based inspection data taken underwater presents significant difficulties. 
The scattering effect and turbulence in the water, as well as variable lighting conditions, 
often complicate the visual identification of damage. Moreover, the complex geometry 
of these structures, coupled with underwater obstructions, poses further challenges in 
scanning all surfaces and areas of interest with adequate resolution. 

To address these challenges, this study proposes a novel automated damage 
detection framework for large-scale underwater structures using a physics-based 
graphics model (PBGM). The proposed framework counteracts the challenges 
presented by damage detection with UUV images, such as the scattering effect, water 
turbulence, and complex geometries. This innovative approach aims to provide effective 
and reliable crack detection on images with high uncertainty and background noise. 



 

For the demonstration of this proposed framework, a high-fidelity finite element 
(FE) model of the Greenup Miter gate on the Ohio River is used in this paper for 
geometry information of the PBGM. Blender 3.4 is then used as a graphic-based 
observational system to simulate underwater images with different inspection distances 
and environmental conditions, such as light conditions and water quality. To further 
enhance the process, we adopt a deep neural network for crack detection with 
segmentation from existing literature [3]. The model is then trained on a synthetically 
generated dataset from Blender using transfer learning, adapting it to the unique 
conditions of underwater circumstances. A diagram of the proposed framework is 
shown in Figure 1. The rest of the paper is constructed as follows. Section 2 introduces 
the development of PBGM from a validated FE model of the miter gate. Section 3 
describes the architecture of the convolutional neural network (CNN) model used in this 
paper and the corresponding training process. Section 4 shows the performance of the 
proposed framework, followed by conclusions in Section 5. 

 

 
Figure 1. Overview of the proposed framework 

 
 

2. PHYSICS-BASED GRAPHICS MODEL DEVELOPMENT 
 

Generating Unmanned Underwater Vehicle (UUV) images from physics-based 
graphic models requires an accurate representation of the real-world structure and its 
surrounding environment, accounting for the complexity of the geometry, the variability 
of environmental conditions, and the uniqueness of underwater optics.  

In this work, we focus on the Greenup miter gate located on the Ohio River. The FE 
model of this miter gate, built in Abaqus 2021 from design drawings, provides the 
fundamental information for the graphical model development as shown in Figure 2 a). 



 

The FE model, which has been validated to provide accurate responses of the miter gate 
under various conditions, captures the structural information needed to translate into a 
graphical model. Detailed information and validation of the FE model can refer to our 
previous work [4-6]. The first step is the extraction of the geometrical information from 
the FE model, including its mesh, nodal coordinates, and element connectivity. This 
data is then imported into Blender 3.4, an open-source 3D graphics software. The raw 
structural data is transferred into a detailed graphics model that closely resembles the 
real miter gate, as shown in Figure 2 b).  

 

 
Figure 2. a) FE model, and b) Field collected photo. 

 
As shown in Figure 3 a), to reproduce the physical appearance of the (underwater) 

structure, we employ Blender's principled bidirectional scattering distribution function 
(BSDF), which enables image textures to the surface of the graphics model, mimicking 
the real structure's material and surface properties. For the underwater environment, a 
cubic volume in Blender is introduced to emulate the water effects, which considers 
various water conditions and turbidity levels. The sunlight is added and modified as 
another essential control of underwater imaging. Cracks, as one of the most dominant 
structural failures, are implemented according to different geometry drawing techniques 
in Blender, covering a wide range of potential failure conditions.  

Once the graphics model of the structure and its surroundings is complete, a 
movable virtual camera is set to mimic the UUV's behavior. The camera can take photos 
underwater at any location and orientation, with parameters such as focal length, light 
beam power, and image resolution adjusted to the desired values. The rendered image 
shown in Figure 3 b) demonstrates the physics-based graphics model with an accurate 
representation of the underwater environment surrounding the real miter gate, enabling 
the generation of realistic UUV photos under specific field scenarios. 

 



 

 
Figure 3. a) Blender model, and b) rendered underwater image example. 

 
 
3. CRACK DETECTION WITH TRANSFER LEARNING 

 
Convolutional Neural Network Architecture 
 

The Convolutional Neural Network (CNN) architecture used for automated crack 
detection from UUV images in this study was adopted from a previous work [3], which 
formulates crack segmentation as a binary image per-pixel classification problem. In 
this context, “0” represents “non-crack” region and “1” corresponding to “crack” areas. 
As shown in Figure 4, the architecture consists of 13 convolutional layers, mirrors the 
first 13 layers in the VGG-16 network, each incorporating convolution, batch 
normalization, and a Rectified Linear Unit (ReLU).  

The architecture uses a filter bank for producing feature maps, while batch 
normalization is utilized to reduce internal covariate shift. The ReLU layer applies the 
activation function max(0, x), enabling the network to learn non-linear functions. Spatial 
pooling is executed through four max-pooling layers, following specific convolutional 
layers which perform plane size reduction using a stride 2 block with a 2×2 kernel filter 
max-pooling.  

The architecture further includes side-output layers and a refinement module. The 
side-output features are obtained via a convolutional layer, with the feature maps 
upsampled by deconvolutional layers to match the input image size. These upsampled 
feature maps are concatenated together, followed by a convolutional layer and a softmax 
layer, which generates an 𝑁-channel probability map (where 𝑁 = 2, corresponding to 
the two classes, i.e., “crack” and “non-crack”). A final predicted label for each pixel is 
acquired via a fixed threshold, and the model refines the fused prediction by applying 
guided filtering. The model is composed of three main parts: the convolutional layers, 
the side-output layers, and the refinement module. Utilizing the principle of transfer 
learning, we adapted the pre-trained model for the task of underwater crack detection. 

 



 

 
Figure 4. CNN architecture. 

 
Data Preparation and Training Configuration 
 

Detecting cracks using images captured by UUVs often yields suboptimal results 
due to the unique properties of the underwater environment, including water turbidity, 
lighting conditions, and complex structure geometry. Recognizing the lack of 
underwater crack images in existing literature, a new dataset was developed. This 
dataset contains photos of a miter gate underwater, created using the 3D computer 
graphics software, Blender. The generated images authentically reflect the intricate 
structural geometry, diverse crack types, and variable lighting conditions characteristic 
of the underwater environment. 

An example of the training image is shown in Figure 5 a). This image highlights the 
challenges of crack identification due to factors such as the corrosion on the steel 
surface, and the less visible cracks located further from the camera (on the back face of 
the gate). To produce a ground truth dataset suitable for transfer learning in this context, 
a duplicate of the photo was rendered, maintaining the original location and angle of 
view, but excluding all surface texturing as shown in Figure 5 b). Subsequently, 
gradient-based post-processing was applied to generate binary ground truth images. In 
these images, the intact regions were represented by “0” (“non-crack” region), while 
“1” corresponded to areas with cracks. In Figure 5 c), by eliminating the potentially 
misleading complex structure geometry from the images, the transfer learning process 
effectively reduced the occurrence of "false positives". 

 

 
Figure 5. Training image example: a) synthetic UUV image, b) Blender model without 

texturing, and c) synthetic ground truth by post-processing 



 

 
Figure 6 illustrates the transfer learning configuration, which utilizes approximately 

100 samples to recalibrate the weights of the original CNN model to accommodate the 
unique circumstances of the UUV case. 

 
 Figure 6. Training configuration. 

 
 
4. RESULTS AND DISCUSSIONS 
 

The efficacy of the proposed framework is evaluated by studying its performance 
across three outstanding scenarios encountered in the UUV task. These scenarios 
include: 1. The presence of cracks against a geometrically intricate surface. 2. Obscure 
cracks appearing on a similarly complex structural surface. 3. Cracks located on the 
structure's reverse face, observed from a skewed viewing angle. The framework 
successfully detected the cracks in the first scenario, affirming its capability in 
identifying substantial defects. In the second scenario, while it was able to detect the 
less apparent cracks, it also misidentified certain structural boundaries as defects. This 
indicates a degree of difficulty in distinguishing genuine flaws from the surface 
irregularities inherent in complex structures. In the third scenario, the cracks were again 
successfully identified. However, the framework falsely recognized the beam 
boundaries as defects, like the second scenario. This suggests that an oblique viewing 
angle and complex geometry can both potentially increase detection error. Additionally, 
it's worth noting that increasing the viewing angle—while potentially reducing the 
UUV's path distance—could compromise the reliability of the structure's inspection. 
This highlights a trade-off between the efficiency of the inspection process and the 
accuracy of defect detection. 

 



 

 
Figure 7. Results for three different outstanding scenarios: a) synthetic UUV image, b) Blender 

model without texturing, and c) synthetic ground truth by post-processing 
 
 

5. CONCLUSIONS 
 

This paper proposed a deep learning-based automatic damage detection framework 
which accommodates the challenges presented during the UUV inspection of large-
scale structures. The proposed framework can effectively evaluate the potential 
consequences of different UUV inspection strategies. Notably, it can optimize UUV 
trajectories, given the presence of multiple environmental noise and uncertainty sources. 
In essence, this study introduces a practical solution that improves inspection efficiency 
and detection accuracy, which essentially enables the optimization of UUV inspection 
task. Overall, it represents a significant contribution to the field of UUV inspection of 
large-scale structures. 
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