
Damage Identification for Guided Wave 
Testing of Composite Structures Using 
Statistical Features 
 

SHRUTI SAWANT, SAUVIK BANERJEE and AMIT SETHI 
 

ABSTRACT 

Guided wave structural health monitoring (GW-SHM) is essential for detecting dam- 
age in composite materials. Conventional damage identification approaches require 
knowledge of material properties to calculated deviation of monitoring signal from base- 
line and are limited to specific damage types or materials. Deep learning has emerged 
as a more automated method, but it requires high computational power. To address this, 
we propose using two features: correlation coefficient deviation (CCD) and root mean 
squared deviation (RMSD). CCD captures the changes in phase of monitoring signal due 
to presence of the damage. RMSD on the other hand is sensitive to changes in the am- 
plitude. When combined with a binary random forest classifier, these features achieve 
performance comparable to deep learning. We tested our algorithm on two datasets with 
different damage types, recording accuracy of 94.4% for Open Guided Waves (OGW) 
dataset and 99.2% for NASA Prognostic Center of Excellence-Guided Waves (PCoE) 
dataset. These lightweight models are suitable for in-situ monitoring, offering practical 
application for damage identification. 

 

 
INTRODUCTION 

GW-SHM systems employed for detecting defects in large civil infrastructure such 
as bridges, aircraft, railway tracks etc. consist of a large number of sensors mounted on 
the structure to perform a variety of measurements. Quantifying deviation of monitoring 
signal from baseline using various statistical relations or features is crucial for damage 
identification. The conventional approach involves extracting wave mode, which shows 
a change in amplitude or/and phase in the presence of damage using group velocity. 
This step requires knowledge of material properties, such as group velocity of various 
wave modes or dispersion curve of the material [1]. Such methods work for particular 
damage types or materials, and are not scalable. When the variations in environmen- 
tal/operational conditions such as temperature, moisture etc. cannot be neglected, a 
conventional approach highly unreliable [2, 3]. 

In recent years, deep learning (DL) techniques have been shown to successfully cir- 
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cumvent the need for feature computation in damage identification using GW-SHM [4–
6]. However, the lack of sensor data corresponding to different damages is a challenge
for the development and validation of DL algorithms. Most supervised DL models lack
robustness and generalizability when trained using this limited data. The large size
of typical deep learning architectures containing convolutional layers with millions of
trainable parameters requires the deployment of trained models on cloud or powerful
desktop/server-grade GPUs for damage assessment.

The utility of easy-to-compute statistical metrics obtained from time-domain signals
for machine fault diagnosis was shown by Bandyopadhyay et al. [7]. For GW-SHM
system, feature engineering is still in nascent stages. Liu et al. reported a feature se-
lection method based on binary particle swarm optimization with a new fitness function
proposed in combination with least-squares support-vector machine for damage identifi-
cation in variety of challenging practical scenarios for switch rail damage [8]. Recently,
Sawant et al. demonstrated the effectiveness of features for damage classification in
composite sandwich structures [9].

In this work we propose using two features; namely, CCD and RMSD. CCD captures
the changes in phase of monitoring signal due to presence of the damage. RMSD on the
other hand is sensitive to changes in the amplitude. When used with binary random
forest classifier for identifying the damage in composite materials, these features give
performance comparable to DL methods reported in the literature. We demonstrated
the proposed algorithm using two public domain datasets, i.e., OGW dataset [10] and
NASA PCoE dataset [11], having different damage types of added mass and edge notch
damage, respectively. Damage identification accuracy of 94.4% was recorded for OGW
dataset, whereas 99.2% for NASA PCoE dataset.

METHODOLOGY

Figure 1. Proposed method using feature extraction for damage identification in GW-
SHM systems

The proposed ML pipeline for damage identification in GW-SHM systems is illus-
trated in Figure 1. GW-SHM system for composite structures considered in this study
uses PZT (peizoelectric) transducers to collect data non-invasively for sensor paths on
a panel having two different geometries. Features play crucial role in quantifying devi-
ation of monitoring data from the baseline data. We computed two features described
below :

Correlation Coefficient Deviation (CCD)

The correlation coefficient measures the linear relationship between two signals and
quantifies the similarity or dissimilarity between them. In GW-SHM, the correlation



coefficient is used to compare the measured wave responses with a reference or baseline
signal obtained from a healthy structure.

CCD = 1�

vuut {
R T

fb(t)f(t)dt}2

{
R T

fb(t)
2dt

R T
f(t)2dt}

(1)

Root Mean Square Deviation (RMSD)

The RMSD is a statistical measure that quantifies the difference or deviation between
baseline signal fb(t) and monitoring signal (f(t)) by taking into account the average
magnitude of the differences or residuals between corresponding data points of the two
signals.
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The correlation coefficient and RMSD are complementary measures in GW-SHM.
By using both measures together, SHM practitioners can gain a comprehensive under-
standing of the structural condition. The correlation coefficient and the phase change
features in the received signal change as the damage size and location change [11]. On
the other hand, increased RMSD value signifies a larger magnitude of deviation. The
combination of these measures can enhance the detection, localization, and quantifica-
tion of structural damage or changes, facilitating effective decision-making.

Finally, for the task of damage identification, binary classifier is trained. The clas-
sifier learns the patterns and relationships in the training data to discriminate between
healthy and damaged states. Once the binary classifier is trained and evaluated, it can
be deployed for damage identification in real-time monitoring scenarios. GW signals
obtained from the structure under surveillance are fed into the classifier, and based on
the learned patterns, the classifier predicts whether the structure is in a healthy or dam-
aged state. This information can be used for early detection, localization, and severity
assessment of structural damage.

EXPERIMENTAL RESULTS

OGW Dataset

The publicly available OGW dataset, containing temperature-affected guided wave
data collected on CFRP plate of dimensions 500mm⇥ 500mm⇥ 2mm using an array
of twelve transducers, was used to evaluate the proposed method [10]. Figure 2 shows
the layout of the composite plate and network of transducers. Added mass defect was
introduced (on 4 locations, one location at a time) using an aluminum disk with diameter
10mm and thickness 3mm bonded to the structure with double-sided adhesive tape on
CFRP panel [10]. The performance was evaluated with data from 36 out of total 66 paths
for which the transmitter and receiver are on opposite sides of the plate (as shown in



Figure 2. Layout of composite plate with network of 12 transducers in OGW dataset [10]

Figure 2) collected at temperatures ranging from 20
�
C to 60

�
C. We considered damage

location D16 and temperature of 20 �
C for our study. For OGW dataset, twelve different

frequencies are available from 40 kHz, 60 kHz, . . . , 260 kHz. Lower frequencies of
actuation (40 kHz, 60 kHz and 80 kHz) have been reported to be more sensitive to the
added mass defects [5].

NASA Dataset

In this dataset, fatigue experiments were conducted on a dog bone specimen with an
edge notch (Figure 3 [11]). The specimen was made of 12 plies of uni-directional T700G
composite material. The study focused on a quasi-isotropic layup-1 configuration. PZTs
were arranged in a parallel array on both sides of the specimen, with PZTs 1–6 used for
actuation and PZTs 7–12 used for sensing. The experiments involved recording thirty-
six actuator-sensor paths for each excitation frequency ranging from 150 kHz, 200 kHz,
. . . , 450 kHz. . For our study, we used a dataset consisting of signals corresponding to
20,000 cycles. The initial state of the structure, which includes an edge notch, consisting
a total of 252 baseline signals, is considered as the baseline [12].

For binary classification, each dataset was split in the proportion 75 : 20 (%) for
training and test purpose. The training dataset, consisting of the extracted features and
corresponding labels (healthy or damaged), is used to train the binary classifier. After
evaluation of various ML models such as logistic regressor, Naive Bayes, support vector
machine, decision tree, we selected used random forest algorithm for this purpose as
it gave the highest accuracy. After training, the performance of the binary classifier
was evaluated using test dataset, which contains GW signals that were not used during
training.



Figure 3. Geometry of dog-bone specimen used in NASA-PCoE dataset [11]

TABLE I. Comparison of our work with previously reported damage assessment methods
validated using OGW dataset (NR denotes ‘not reported’)

Reference Damage
identification

accuracy

Method

Rautela et
al. [6]

100% Unsupervised deep learning
using 2D representations

Bosse et
al. [13]

NR Feature engineering, super-
vised classifier & regressor

Amer et
al. [14]

95% Stochastic non-parametric
models with Z-statistics

Sawant et
al. [5]

100% Unsupervised deep transfer
learning using 1D-CNN

This work 94.4% Supervised classifier with
statistical features

A comparison of our work to various reports on OGW dataset in literature is pre-
sented in Table I. Most results reported in the literature on DL models in supervised
or unsupervised setups require cloud computing or powerful GPUs for deployment and
training. The method proposed in this work overcomes this limitation using classical
ML models with features, and we have shown damage identification accuracy of 94.4%
for D16. For NASA dataset, Rautela et al. reported perfect accuracy using unsupervised
deep learning approach [6]. Peng et al proposed a probabilistic framework for location
and size determination for delamination in carbon–carbon composites and used Lamb
wave-based damage detection features to make probability image of delaminated area
with the Bayesian updating technique [11]. To the best of our knowledge, there is no
approach report of feature based damage identification for NASA dataset.

CONCLUSION AND FUTURE WORK

We presented a feature-based damage identification method for the GW-SHM sys-
tem for composite structures. The method presented in our work uses two statistical
features computed using time domain signals. The proposed approach was validated on



two pubic domain datasets containing different geometries. It gives performance compa-
rable to state of the art DL methods with near perfect accuracy. Using statistical features
with classical ML models, we achieved performance comparable to DL architectures
reported in the literature. The vast reduction in computations enables deployment on
an edge device and thus is a promising development for truly portable GW-SHM sys-
tems without dependence on cloud computing or desktop/server-grade GPUs for data
processing. CCD plays a crucial role in quantifying the phase change in GW signals.
RMSD effectively captures amplitude change in time domain. The OGW dataset con-
tains temperature-affected data corresponding to only one type of damage (added mass),
of only one severity (i.e., weight) at known locations. In the future, we wish to in-
vestigate the feasibility of the method proposed in this work for temperature variations,
different types of structures, damages and severity. We shall also explore implementation
of the proposed method on the edge device in order to realize truly portable GW-SHM
systems.
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