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ABSTRACT

Electrical lines are critical infrastructure components. Line failures can cause catas-
trophic wildfires resulting in immeasurable damage to life and property. This paper dis-
cusses the implementation of an electrical infrastructure management model that tracks
component degradation over time and incorporates inspection and monitoring data to
update the model; the model then identifies components with the highest risk of failure
to direct maintenance operations and estimate long-term line performance. The capacity
of the structures is represented through fragility curves based on first-principles mod-
eling and industry standards. Threat models, such as metal corrosion and wood decay,
estimate how the fragility curve will evolve with time, based on environmental data and
the age of the structure. Data-driven approaches are used to incorporate field data and
historical performance into the model. Bayesian updating is used to adjust the fragility
curves based on historical wind and outage data. Similarly, observed deterioration from
field condition inspections are applied to further modify the model. Using a site-specific
hazard model, an annualized probability of failure is estimated for each structure on an
electrical line. First, an overview of the framework is provided, with a specific focus on
wind hazards. To illustrate the application of the model and illustrate the challenges en-
countered in implementation, an example case study is discussed, exploring how the pre-
dicted probabilities of failure can be impacted by the choice of wind hazard model. This
choice can result in geographic bias towards both under- and over-predicting probabil-
ity of failure, and therefore can result in misdirection of maintenance resources. Future
planned improvements are discussed.
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INTRODUCTION

Wildfires in California result in millions of acres burned per year, causing property
destruction and, in extreme cases, fatalities [1]. Some of these fires have been attributed
to equipment failures of electrical transmission and distribution infrastructure [2,3]. This
paper describes an electrical infrastructure monitoring framework to mitigate wildfire
risk. A case study is presented that illustrates the impact that the hazard modeling ap-
proach can have on the framework output. The goal of the framework is to incorpo-
rate first-principles modeling, historical performance data, inspection data, and other
information about assets of an electrical infrastructure system to direct inspection and
maintenance efforts in order to prevent component failures that could result in wildfire
ignition.

OVERVIEW OF FRAMEWORK METHODOLOGY

First, a database of assets (i.e., structures and their supported conductors and equip-
ment) is created. This database includes information about component type, age, ma-
terial, and environmental conditions. With this information, the structural capacity of
each asset can be estimated and projected forward in time to track expected performance
against various hazards as the asset ages and deteriorates. In this paper, wind hazards are
considered, but the methodology has also been adapted to earthquakes and other haz-
ards. Based on historical wind records, the annualized probability of failure for each
asset is estimated. With this model, both current and future annualized probabilities
of failure can be estimated to characterize long-term asset health and coordinate future
interventions.

CAPACITY CALCULATION

For wind hazards, the capacity of each asset is modeled as a fragility function, which
estimates the asset’s conditional probability of failure as a function of windspeed (Fig-
ure 1). Each fragility function is parametrized as a lognormal cumulative distribution
function (CDF) with a median, the windspeed at which half of all assets would fail, and
a dispersion parameter, J. Fragility functions are developed based on target reliabili-
ties from standards for reliability-based design of transmission structures [4,5]. Median
strengths are determined by assuming that all components are designed to the minimum
design wind loads for transmission structures given by California Public Utilities Com-
mission General Order 95 (GO 95) [6]. To account for the condition of the asset in
the field, these base fragility curve parameters are modified based on a structure’s age,
first-principles degradation models, observations of field condition, and historical power
outage records.

As an asset ages, uncertainty in the asset’s ability to resist load increases, modeled
as an increase in the dispersion parameter. For each asset type, a design life is assumed,
beyond which the asset should be evaluated, repaired, or replaced. At the design life,
a dispersion is selected that produces a conditional probability of failure at the design
windspeed corresponding to a 1/3 reduction in asset strength. This 1/3 factor was se-
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Figure 1. Example fragility function for new and deteriorated structures.

lected to reflect the GO 95 standard, which mandates intervention when the “at new”
safety factor drops below 2/3. The dispersion, /3, is assumed to follow a parabolic func-
tion between the starting dispersion, 3y, and the dispersion at the design life, Sz (Figure
2). However, these values do not account for additional deterioration due to environmen-
tal effects. First-principles degradation models, termed threat models, further modify
the fragility curve for a given asset over time to account for reductions in strength and
increasing uncertainty in performance. Examples of threat models that have been ad-
dressed include atmospheric and underground corrosion, fatigue, and wear. The threats
are specific to each site; for example, the corrosion threat at a given site is based on
available environmental records. Threats typically modify the design life, which in turn
modifies the dispersion, affecting asset strength uncertainty.

Field inspection and historical performance data are also considered in the model.
For example, standardized inspections of wood pole decay are mapped to incremental
strength reductions, which modify the median strength. Historical performance records
are incorporated through a Bayesian updating procedure. Prior distributions are assumed
for the fragility median and dispersion. These distributions are updated considering his-
torical power outages and maximum daily windspeeds. Note that with Bayesian updat-
ing, strength and uncertainty can either increase or decrease. The final fragility function
for each asset accounts for age, threat models, inspection data, and Bayesian updating
modifiers.

HAZARD MODELING

The wind hazard model is developed from historical windspeed records. Provided
with records of maximum daily 3-second gust windspeed, an empirical CDF of max-
imum daily windspeed is developed (Figure 3). A Type I Extreme Value (Gumbel)
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Figure 2. Fragility dispersion, 3, as a function of time for different structures subject to
different capacity modifications.
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Figure 3. Example maximum daily windspeed CDF (left) and associated hazard curve
(right).

distribution is fit to this empirical CDF. From the Gumbel CDF, annual exceedance fre-
quencies are calculated to produce a hazard curve for annualized probability of failure
calculations. Note that an empirical hazard curve could also be developed from the
windspeed data directly. However, fitting an analytical hazard curve enables efficient
characterization of wind hazards across many thousands of sites, and accounts for the
possibility of higher windspeeds than those of the historical record.

ESTIMATING ANNUALIZED PROBABILITY OF FAILURE

Given an asset fragility function and hazard curve, the annual failure rate, J, is cal-
culated:
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where, im is the hazard, p(f|im) is probability of failure conditioned on the intensity
of the hazard (the fragility function), and }%} is the absolute value of the derivative of
the hazard curve. Assuming failures follow a Poisson process, the annualized probability

of failure is given by:

P(fy=1-¢? 2)

The annualized probability of failure is computed for each asset in the system. These
probabilities are communicated to stakeholders to help direct maintenance and repair
operations. The predictions can also further be refined as new inspection data becomes
available or new components are installed. The results, however, are sensitive to mod-
eling decisions and assumptions for each aspect of the model. The following section
investigates how the resulting annualized probabilities of failure can be impacted by the
choice of hazard curve modeling.

CASE STUDY: HAZARD CURVE MODELING IMPACTS ON ANNUALIZED
PROBABILITY OF FAILURE

As described previously, the wind hazard at each site is described by a Gumbel dis-
tribution fit to historical maximum daily windspeed records. The Gumbel distribution
provides a rational way to efficiently characterize wind hazard across many different
sites; however, the quality of this fit can create bias in the predicted annualized prob-
abilities of failure. Here, quality of fit is measured as the mean square error (MSE)
between the empirical windspeed percentiles and the Gumbel distribution fit to the data.
Three example windspeed CDFs are shown in Figure 4. At Site A, the Gumbel distri-
bution underestimates the windspeed percentiles at higher windspeeds. Consequently,
calculations with the Gumbel hazard curve will overestimate the annualized probability
of failure. In contrast, at Site B, the Gumbel distribution overestimates the windspeed
percentiles at high windspeeds. Consequently, this hazard curve will underestimate an-
nualized probability of failure for that site, potentially obscuring high-risk assets in the
system. At Site C, the MSE value is several orders of magnitude lower than that of either
A or B, and the Gumbel distribution approximates the empirical windspeed percentiles
very closely. This variability across sites can result in geographically biased estimates
of annualized probabilities of failure.

To evaluate the impact of hazard curve fit, the equivalent annualized probability of
failure metric is introduced. The purpose of this metric is to account for the variability in
windspeed magnitude across different sites (i.e., the natural variability in site windiness).
At each site, an empirical hazard curve is considered, based on historical windspeed data.
An asset fragility function is found that yields an annualized probability of failure of
0.001 (chosen for convenience) when integrated with that site’s empirical hazard curve.
The equivalent annualized probability of failure at a site is obtained when integrating
this fragility function with the Gumbel distribution for that site. Thus, the equivalent
annualized probability of failure normalizes each site to a uniform annualized probability
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Figure 4. Empirical and Gumbel fit maximum daily windspeed CDFs for different sites.

of failure for the empirical wind hazard so that the impact of the hazard curve fit can be
compared across different sites.

The equivalent annualized probability of failure is computed for each asset along an
example transmission line. Mapping the distribution of both MSE and equivalent annu-
alized probability of failure along the line reveals geographic bias solely due to hazard
curve fit quality. The following section presents the mapped equivalent annualized prob-
abilities of failure and discusses implications for the risk model.

RESULTS AND DISCUSSION

The MSE and the equivalent annualized probability of failure for each asset of the
example transmission line are plotted geographically in Figure 5. Each asset on the
map is represented with a single marker. The example transmission line trends approx-
imately east-west. MSE values are low to moderate along most of the length, except at
the east end, where MSE is highest. Ideally, each asset will have an equivalent annu-
alized probability of failure slightly higher than 0.001. This result would indicate that
the Gumbel distribution provides a good approximation of the empirical hazard curve,
but also captures the additional risk due to the possibility of windspeeds greater than the
highest measured historical windspeed. However, as Figure 5 shows, the equivalent an-
nualized probability of failure ranges over several orders of magnitude, from a minimum
of 3.1 x 10~° to a maximum of 0.26 for the example line. These extreme values typi-
cally occur near transitions between types of topography, such as mountain passes. Note
that the magnitude of equivalent annualized probability of failure does not necessarily
correlate with the magnitude of MSE. In other words, some assets with high MSE still
have equivalent annualized probability of failure close to 0.001, and vice versa. This is
likely because annualized probability of failure is driven by values at the upper tail of
the hazard curve, while MSE considers the full range of windspeeds.

The poor analytical hazard curve fit, and consequent high variability in the equivalent
annualized probability of failure, may be a result of varying environment and geography.
For example, previous research has documented that wind maxima driven by different
phenomena will follow different distributions [7, 8]. One possibility is that in these
topographically complex regions, windspeed maxima are driven by multiple weather
phenomena, and therefore a single Gumbel distribution cannot adequately describe the
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Figure 5. Equivalent probability of failure and MSE plotted along an example transmis-
sion line.

wind hazard. Regardless of the cause, the variability in equivalent annualized probability
of failure presents challenges for the successful application of an electrical infrastructure
management model.

This variability causes certain regions to have a bias towards lower or higher pre-
dicted annualized probabilities of asset failure. The model would seemingly predict bet-
ter asset health in regions with a bias towards lower annualized probabilities of failure
and worse asset health in regions with a bias towards higher annualized probabilities of
failure. For example, assets in Figure 5 (top) with warmer colors could falsely appear to
be in good condition, while assets with cooler colors could falsely appear to be in need
of repair. If the model results are used to direct inspection and maintenance operations,
this bias can direct resources towards assets in good condition and away from assets that
require intervention.

CONCLUSIONS

This paper described a model developed to monitor large inventories of electrical
infrastructure assets. Fragility functions were used to represent asset capacities; these
functions were modified to account for age, environmental threats, historical perfor-
mance, and inspection data. Wind hazard was represented by fitting a Gumbel distribu-



tion to an empirical CDF developed from site-specific historical wind data. The conse-
quences of this approach were investigated, and in some cases it was found to produce
geographic bias in the predicted annualized probabilities of asset failure. This bias could
result in resources being redirected away from deficient assets in need of maintenance.
Ongoing efforts will explore different ways of capturing this hazard, such as using the
peaks-over-threshold method to fit a Generalized Pareto Distribution to the upper tail of
the empirical wind data [9]. Such a method may produce more consistent annualized
probabilities of failure across sites.
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