

Interlaminar Shear Behavior of UHMWPE Tensylon® Composites in Quasi-Static Mode II Loading
Abstract
Ultrahigh molecular weight polyethylene (UHMWPE) film composite materials such as Tensylon® HSBD30A are useful for ballistic applications, but quantification of their interlaminar shear behavior is necessary to inform design considerations. This study investigates a double lap shear specimen to determine mode II interlaminar shear properties. Average shear stresses calculated from measured loads and relative displacements calculated from full-field displacement data obtained via digital image correlation are used to produce an approximate traction-separation law. For a representative specimen, interfacial shear strength is calculated to be 3.18 MPa, mode II critical energy release rate is 465 J/m2, and interfacial stiffness is 36.8 MPa/mm. The double lap shear specimen is found to be appropriate for approximating these values, but the potential for complex loading states caused by non-simultaneous crack growth necessitates further investigation into alternative specimen configurations.
DOI
10.12783/asc37/36482
10.12783/asc37/36482
Refbacks
- There are currently no refbacks.