Open Access Open Access  Restricted Access Subscription Access

Experimental Validation of the Dynamic Molecular State of Water in Damaged Polymer Composites Using Near Infrared Spectroscopy

OLUWATIMILEHIN OLUWAJIRE, KATHERINE BERKOWITZ, RISHABH D. GUHA, LANDON GRACE

Abstract


Safety has long been a key factor in the design, manufacturing and maintenance of products that are made from composite materials. The exceptional properties these materials exhibit compared to their metal counterparts is enabling widespread adoption across civil infrastructure, oil & gas, marine, automotive, and aerospace industries. But the lack of a definitive and accurate technique to predict damage progression in a polymer-matrix composite (PMC) during their service life continues to pose a major risk and creates a gap in the long-term integrity of the structures produced. Although there is widespread consensus regarding the deleterious effects of the ingressed moisture on the overall properties of a composite, recent studies have revealed that the inevitable presence of moisture in a PMC can be leveraged for damage characterization. This work aims to employ Near-Infrared spectroscopy for quantifying molecular moisture in polymer composites for submicron scale damage detection. Prior to moisture absorption, a drop tower was used to induce a barely visible impact damage (BVID) in the center of dry E-glass/epoxy specimens. Three different specimens were subjected to 1J, 1.5J, and 2J of damage, respectively. The NIR Nano EVM Spectrophotometer was used to obtain spectral scans between wavelengths of 900-1700 nm for each of the three damaged samples, as well as an undamaged sample, in their dry state. The samples were then exposed to moisture contamination via water bath, and subsequent spectral scans were acquired at consistent intervals of gravimetric moisture gain. The spatial variation of the moisture content was evaluated from the characteristic peak for water in the damaged samples at various levels of absorbed moisture. The absorbance area obtained from the NIR spectral shows quantitative values to represent increasing damage and spatial maps indicating different states of absorbed moisture in each sample.


DOI
10.12783/asc37/36407

Full Text:

PDF

Refbacks

  • There are currently no refbacks.