The Effects of Debulking on the Microstructure of Carbon Fiber Reinforced Composites
Abstract
10.12783/asc36/35951
Full Text:
PDFReferences
Williams C, Summerscales J, Grove S (1996) Resin Infusion under Flexible
Tooling (RIFT): a review. Composites Part A: Applied Science and Manufacturing
:517–524. https://doi.org/10.1016/1359-835X(96)00008-5
de Almeida SFM, Neto Z dos SN (1994) Effect of void content on the strength
of composite laminates. Composite Structures 28:139–148.
https://doi.org/10.1016/0263-8223(94)90044-2
Liu L, Zhang B-M, Wang D-F, Wu Z-J (2006) Effects of cure cycles on void
content and mechanical properties of composite laminates. Composite Structures
:303–309. https://doi.org/10.1016/j.compstruct.2005.02.001
Lambert J, Chambers AR, Sinclair I, Spearing SM (2012) 3D damage
characterisation and the role of voids in the fatigue of wind turbine blade materials.
Composites Science and Technology 72:337–343.
https://doi.org/10.1016/j.compscitech.2011.11.023
Di Landro L, Montalto A, Bettini P, et al (2017) Detection of Voids in
Carbon/Epoxy Laminates and Their Influence on Mechanical Properties. Polymers
and Polymer Composites 25:371–380. https://doi.org/10.1177/096739111702500506
Sisodia S, Bull D, George A, et al (2019) The effects of voids in quasi-static
indentation of resin-infused reinforced polymers. Journal of Composite Materials
:4399–4410. https://doi.org/10.1177/0021998319858024
Mehdikhani M, Gorbatikh L, Verpoest I, Lomov SV (2019) Voids in fiberreinforced
polymer composites: A review on their formation, characteristics, and
effects on mechanical performance. Journal of Composite Materials 53:1579–1669.
https://doi.org/10.1177/0021998318772152
Schell JSU, Deleglise M, Binetruy C, et al (2007) Numerical prediction and
experimental characterisation of meso-scale-voids in liquid composite moulding.
Composites Part A: Applied Science and Manufacturing 38:2460–2470.
https://doi.org/10.1016/j.compositesa.2007.08.005
Hamidi YK, Aktas L, Altan MC (2005) Effect of packing on void morphology
in resin transfer molded E-glass/epoxy composites. Polymer Composites 26:614–627.
https://doi.org/10.1002/pc.20132
Hernández S, Sket F, González C, LLorca J (2013) Optimization of curing
cycle in carbon fiber-reinforced laminates: Void distribution and mechanical
properties. Composites Science and Technology 85:73–82.
https://doi.org/10.1016/j.compscitech.2013.06.005
Kim YR, McCarthy SP, Fanucci JP (1991) Compressibility and relaxation of
fiber reinforcements during composite processing. Polymer Composites 12:13–19.
https://doi.org/10.1002/pc.750120104
Robitaille F, Gauvin R (1999) Compaction of textile reinforcements for
composites manufacturing. III: Reorganization of the fiber network. Polymer
Composites 20:48–61. https://doi.org/10.1002/pc.10334
Grieser T, Mitschang P (2017) Investigation of the compaction behavior of
carbon fiber NCF for continuous preforming processes. Polymer Composites
:2609–2625. https://doi.org/10.1002/pc.23854
Lectez A-S, El Azzouzi K, Binetruy C, et al (2018) Three-dimensional
mechanical properties of dry carbon fiber tows subjected to cyclic compressive
loading. Journal of Composite Materials 52:2661–2677.
https://doi.org/10.1177/0021998317752229
Pearce N, Summerscales J (1995) The compressibility of a reinforcement
fabric. Composites Manufacturing 6:15–21. https://doi.org/10.1016/0956-
(95)93709-S
Niggemann C, Song YS, Gillespie JW, Heider D (2008) Experimental
Investigation of the Controlled Atmospheric Pressure Resin Infusion (CAPRI)
Process. Journal of Composite Materials 42:1049–1061.
https://doi.org/10.1177/0021998308090650
Somashekar AA, Bickerton S, Bhattacharyya D (2007) Exploring the nonelastic
compression deformation of dry glass fibre reinforcements. Composites
Science and Technology 67:183–200.
https://doi.org/10.1016/j.compscitech.2006.07.032
George A, Hannibal P, Morgan M, et al (2019) Compressibility measurement
of composite reinforcements for flow simulation of vacuum infusion. Polymer
Composites 40:961–973. https://doi.org/10.1002/pc.24770
Danzi M, Klunker F, Ermanni P (2017) Experimental validation of throughthickness
resin flow model in the consolidation of saturated porous media. Journal of
Composite Materials 51:2467–2475. https://doi.org/10.1177/0021998316671574
Yenilmez B, Caglar B, Sozer EM (2017) Viscoelastic modeling of fiber
preform compaction in vacuum infusion process. Journal of Composite Materials
:4189–4203. https://doi.org/10.1177/0021998317699983
Matsuzaki R, Seto D, Todoroki A, Mizutani Y (2014) Void formation in
geometry–anisotropic woven fabrics in resin transfer molding. Advanced Composite
Materials 23:99–114. https://doi.org/10.1080/09243046.2013.832829
Lundström TS, Gebart BR (1994) Influence from process parameters on void
formation in resin transfer molding. Polymer Composites 15:25–33.
https://doi.org/10.1002/pc.750150105
Patel N, Lee LJ (1995) Effects of fiber mat architecture on void formation and
removal in liquid composite molding. Polymer Composites 16:386–399.
https://doi.org/10.1002/pc.750160507
Park CH, Woo L (2011) Modeling void formation and unsaturated flow in
liquid composite molding processes: a survey and review. Journal of Reinforced
Plastics and Composites 30:957–977. https://doi.org/10.1177/0731684411411338
Staffan Lundström T, Frishfelds V, Jakovics A (2010) Bubble formation and
motion in non-crimp fabrics with perturbed bundle geometry. Composites Part A:
Applied Science and Manufacturing 41:83–92.
https://doi.org/10.1016/j.compositesa.2009.05.012
Schey MJ, Beke T, Appel L, et al (2021) Identification and Quantification of
D Fiber Clusters in Fiber-Reinforced Composite Materials. JOM 73:2129–2142.
https://doi.org/10.1007/s11837-021-04703-0
Refbacks
- There are currently no refbacks.