

Influence of Temperature-Dependent Resin Behavior on Numerical Prediction of Effective CTEs of 3D Woven Composites
Abstract
10.12783/asc36/35938
References
Huang T, Wang Y, Wang G. Review of the Mechanical Properties of a 3D Woven Composite and Its Applications. Polym Plast Technol Eng 2018;57:740–56. https://doi.org/10.1080/03602559.2017.1344857.
Tan P, Tong L, Steven GP, Ishikawa T. Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Compos Part A Appl Sci Manuf 2000;31:259–71. https://doi.org/10.1016/S1359-835X(99)00070-6.
Ikarashi Y, Ogasawara T, Aoki T. Effects of cyclic tensile loading on the rupture behavior of orthogonal 3-D woven SiC fiber/SiC matrix composites at elevated temperatures in air. J Eur Ceram Soc 2019;39:806–12. https://doi.org/10.1016/j.jeurceramsoc.2018.10.016.
Ma Z, Zhang P, Zhu J. Review on the fatigue properties of 3D woven fiber/epoxy composites: testing and modelling strategies. J Ind Text 2020. https://doi.org/10.1177/1528083720949277.
Islam MS, Melendez-Soto E, Castellanos AG, Prabhakar P. Investigation of woven composites as potential cryogenic tank materials. Cryogenics (Guildf) 2015;72:82–9. https://doi.org/10.1016/j.cryogenics.2015.09.005.
Wilkinson MP, Ruggles-Wrenn MB. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature. Appl Compos Mater 2017;24:1405–24. https://doi.org/10.1007/s10443-017-9597-5.
Sevostianov I. On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech Mater 2012;45:20–33. https://doi.org/10.1016/j.mechmat.2011.10.001.
Tan P, Tong L, Steven GP. Models for Predicting Thermomechanical Properties of Three-Dimensional Orthogonal Woven Composites. J Reinf Plast Compos 1999;18:151–85. https://doi.org/10.1177/073168449901800204.
Ai S, Fu H, He R, Pei Y. Multi-scale modeling of thermal expansion coefficients of C/C composites at high temperature. Mater Des 2015;82:181–8. https://doi.org/10.1016/j.matdes.2015.05.061.
Wang P, Zhang S, Li H, Kong J, Li W, Zaman W. Variation of thermal expansion of carbon/carbon composites from 850 to 2500°C. Ceram Int 2014;40:1273–6. https://doi.org/10.1016/j.ceramint.2013.08.038.
Dong K, Peng X, Zhang J, Gu B, Sun B. Temperature-dependent thermal expansion behaviors of carbon fiber/epoxy plain woven composites: Experimental and numerical studies. Compos Struct 2017;176:329–41. https://doi.org/10.1016/j.compstruct.2017.05.036.
Gou JJ, Gong CL, Gu LX, Li S, Tao WQ. The unit cell method in predictions of thermal expansion properties of textile reinforced composites. Compos Struct 2018;195:99–117.
https://doi.org/10.1016/j.compstruct.2018.04.045.
Siddgonde N, Ghosh A. Thermo-mechanical modeling of C/C 3D orthogonal and angle interlock woven fabric composites in high temperature environment. Mech Mater 2020;148:103525. https://doi.org/10.1016/j.mechmat.2020.103525.
Trofimov A, Le-Pavic J, Therriault D, Lévesque M. An efficient multi-scale computation of the macroscopic coefficient of thermal expansion: Application to the Resin Transfer Molding manufactured 3D woven composites. Int J Solids Struct 2021;210–211:162–9. https://doi.org/10.1016/j.ijsolstr.2020.11.012.
Drach B, Tsukrov I, Trofimov A, Gross T, Drach A. Comparison of stress-based failure criteria for prediction of curing induced damage in 3D woven composites. Compos Struct 2018;189:366–77. https://doi.org/10.1016/j.compstruct.2018.01.057.
Vasylevskyi K, Tsukrov I, Drach B, Buntrock H, Gross T. Identification of process-induced residual stresses in 3D woven carbon/epoxy composites by combination of FEA and blind hole drilling. Compos Part A Appl Sci Manuf 2020;130:105734. https://doi.org/10.1016/j.compositesa.2019.105734.
Drach A, Drach B, Tsukrov I. Processing of fiber architecture data for finite element modeling of 3D woven composites. Adv Eng Softw 2014;72:18–27. https://doi.org/10.1016/j.advengsoft.2013.06.006.
Wang Y, Sun X. Digital-element simulation of textile processes. Compos Sci Technol 2001;61:311–9. https://doi.org/10.1016/S0266-3538(00)00223-2.
Lomov S V, Ivanov DS, Verpoest I, Zako M. Meso-FE modelling of textile composites : Road map, data flow and algorithms. Compos Sci Technol 2007;67:1870–91. https://doi.org/10.1016/j.compscitech.2006.10.017.
Zhou E, Mollenhauer D, Iarve E. A realistic 3-D textile geometric model. Seventeenth Int Conf Compos Mater ICCM-17 2009:100–10.
Long AC, Brown LP. 8 - Modelling the geometry of textile reinforcements for composites: TexGen. In: Boisse P, editor. Compos. Reinf. Optim. Perform., Woodhead Publishing; 2011, p. 239–64. https://doi.org/https://doi.org/10.1533/9780857093714.2.239.
Miao Y, Zhou E, Wang Y, Cheeseman BA. Mechanics of textile composites : Micro-geometry. Compos Sci Technol 2008;68:1671–8. https://doi.org/10.1016/j.compscitech.2008.02.018.
Whitcomb JD, Chapman CD, Tang X. Derivation of Boundary Conditions for Micromechanics Analyses of Plain and Satin Weave Composites. J Compos Mater 2000;34:724–47. https://doi.org/10.1177/002199830003400901.
Tsukrov I, Giovinazzo M, Vyshenska K, Bayraktar H, Goering J, Gross T. Comparison of Two Approaches to Model Cure-Induced Microcracking in Three-Dimensional Woven Composites. Vol. 3 Des. Mater. Manuf. Parts A, B, C, ASME; 2012, p. 541. https://doi.org/10.1115/IMECE2012-86395.
Chamis CC. Mechanics of composite materials: Past, present, and future. J Compos Technol Res 1989;11:3–14. https://doi.org/10.1520/ctr10143j.
Tsukrov I, Bayraktar H, Giovinazzo M, Goering J, Gross T, Fruscello M, et al. Finite element modeling to predict cure-induced microcracking in three-dimensional woven composites. Int J Fract 2011;172:209–16. https://doi.org/10.1007/s10704-011-9659-x.
Tsukrov I, Drach B, Gross T. Effective stiffness and thermal expansion coefficients of unidirectional composites with fibers surrounded by cylindrically orthotropic matrix layers. Int J Eng Sci 2012;58:129–43. https://doi.org/10.1016/j.ijengsci.2012.03.032.
Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 1963;11:127–40. https://doi.org/10.1016/0022-5096(63)90060-7.
Hashin Z. Analysis of Properties of Fiber Composites With Anisotropic Constituents. J Appl Mech 1979;46:543–50. https://doi.org/10.1115/1.3424603.
Schapery RA. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles. J Compos Mater 1968;2:380–404. https://doi.org/10.1177/002199836800200308.
Brauner C, Block TB, Purol H, Herrmann AS. Microlevel manufacturing process simulation of carbon fiber/epoxy composites to analyze the effect of chemical and thermal induced residual stresses. J Compos Mater 2012;46:2123–43. https://doi.org/10.1177/0021998311430157.
Karch C. Micromechanical Analysis of Thermal Expansion Coefficients. Model Numer Simul
Mater Sci 2014;04:104–18. https://doi.org/10.4236/mnsms.2014.43012.
Drach B, Tsukrov I, Trofimov A. Comparison of full field and single pore approaches to homogenization of linearly elastic materials with pores of regular and irregular shapes. Int J Solids Struct 2016;96:48–63. https://doi.org/10.1016/j.ijsolstr.2016.06.023.
Morelle XP, Chevalier J, Bailly C, Pardoen T, Lani F. Mechanical characterization and modeling of the deformation and failure of the highly crosslinked RTM6 epoxy resin. Mech Time-Dependent Mater 2017;21:419–54. https://doi.org/10.1007/s11043-016-9336-6.
Ewert A, Drach B, Vasylevskyi K, Tsukrov I. Predicting the overall response of an orthogonal 3D woven composite using simulated and tomography-derived geometry. Compos Struct 2020;243:112169. https://doi.org/10.1016/j.compstruct.2020.112169.
Refbacks
- There are currently no refbacks.