Open Access Open Access  Restricted Access Subscription Access

Stress and Failure Analysis of Woven Composites Using an Automated Conformal Mesh Method

AGNIPROBHO MAZUMDER, QIBANG LIU, YOUQI WANG, CHIAN-FONG YEN

Abstract


This paper presents a progressive damage modeling study to investigate the damage and failure behaviors of woven composites using an automated structured conformal meshing model developed by the authors. The composite domain consists of two materials: yarns and matrix. Yarns impregnated by matrix are considered to be homogenous and transversely isotropic. Each yarn element has its local coordinate system oriented according to the yarn’s centroid path. Properties of yarn are obtained using a micromechanics-based homogenization method. The matrix is considered to be homogenous and isotropic. Maximum stress is used as the damage initiation criteria under tensile loading. Damage evolution is governed by the material property degradation method. The meshing algorithm is based on a realistic micro-geometry generated using the Digital Fabric Mechanics Analyzer (DFMA), and thus is applicable to a wide variety of woven architectures. Numerical damage predictions are discussed and compared with previous numerical studies and experimental data to support the validity of the proposed model.


DOI
10.12783/asc36/35935

Full Text:

PDF

References


Vandeurzen P., Ivens J., and Verpoest I. 1996. “A three-dimensional micromechanical analysis of woven-fabric composites: I. geometric analysis,†Compos. Sci. Technol., 56(11):1303–15.

Verpoest I., and Lomov S.V. 2005. “Virtual textile composites software wisetex: integration with micro-mechanical, permeability and structural analysis,†Compos. Sci. Technol., 65(15):2563–74.

Lin H., Brown L.P., and Long A.C. 2011. “Modelling and simulating textile structures using texgen,†Advances in Textile Engineering Advanced Materials Research, vol. 331. Trans Tech Publications, p. 44–47.

Miao Y., Zhou E., Wang Y., and Cheeseman B.A. 2008. “Mechanics of textile composites: microgeometry,†Compos. Sci. Technol., 68(7):1671–8.

Huang L., Wang Y., Miao Y., Swenson D., Ma Y., and Yen C-F. 2013. “Dynamic relaxation approach with periodic boundary conditions in determining the 3-d woven textile microgeometry,†Compos. Struct., 106:417–25.

Durville D. 2011. “15 – microscopic approaches for understanding the mechanical behavior of reinforcement in composites,†Woodhead Publishing Series in Composites Science and Engineering, pp. 461–485.

Wucher B., Hallstrm S., Dumas D., Pardoen T., Bailly C., Martiny P., and Lani F. 2017 “Non-conformal mesh-based finite element strategy for 3d textile composites,†J. Compos. Mater., 51(16):2315–30.

Green S., Matveev M., Long A., Ivanov D., and Hallett S. 2014. “Mechanical modelling of 3d woven composites considering realistic unit cell geometry,†Compos. Struct., 118:284–93.

Hello G., Schneider J.D., and Aboura Z. 2014. “Numerical simulations of woven composite materials with voxel-FE models,†in Proceedings of the 16th European Conference on Composite Materials (ECCM 2014), Seville, Spain.

Potter E., Pinho S., Robinson P., Iannucci L., and McMillan A. 2012. “Mesh generation and geometrical modelling of 3d woven composites with variable tow cross-sections,†Comput. Mater. Sci., 51(1):103–11.

Joo Kim H., and Swan C. 2003. “Voxel based meshing and unit cell analysis of textile composites,†Int. J. Numer. Meth. Eng., 56:977–1006.

Nakai H., Kurashiki T., and Zako M. 2007. “Individual modeling of composite materials with mesh superposition method under periodic boundary condition,†in Proceedings of the 16th International Conferences on Composite Materials (ICCM-16).

Drach A., Drach B., and Tsukrov I. 2014. “Processing of fiber architecture data for finite element modeling of 3d woven composites,†Adv. Eng. Softw., 72:18–27.

Drach A., Drach B., Tsukrov I., Bayraktar H., and Goering J. 2013. “Realistic fea modeling of 3d woven composites on mesoscale,†in Proceedings of the 19th International Conference on Composite Materials (ICCM-19).

Grail G., Hirsekorn M., Wendling A., Hivet G., and Hambli R. 2013. “Consistent finite element mesh generation for meso-scale modeling of textile composites with preformed and compacted reinforcements,†Compos. Part A: Appl. Sci. Manuf., 55:143–51.

Lomov S.V., Ivanov D.S., Verpoest I., Zako M., Kurashiki T., Nakai H., and Hirosawa S. 2007. “Meso-fe modelling of textile composites: road map, data flow and algorithms,†Compos. Sci. Technol., 67(9):1870–91.

Kim H.J., and Swan C.C. 2003. “Algorithms for automated meshing and unit cell analysis of periodic composites with hierarchical tri-quadratic tetrahedral elements,†Int. J. Numer. Meth. Eng., 58(11):1683–711.

Ha M.H., Cauvin L., and Rassineux A. 2016. “A methodology to mesh mesoscopic representative volume element of 3d interlock woven composites impregnated with resin,†Comptes. Rendus. Mcanique., 344(4):267–83.

Bergan A.C., 2020. “An automated meshing framework for progressive damage analysis of fabrics using Compdam,†in Proceedings of the 35th American Society for Composites Technical Conference, Jersey City, NJ, (virtual).

Mazumder A., Wang Y., and Yen C.F. 2020. “A structured method to generate conformal FE Mesh for Realistic Textile Composite Micro-Geometry,†Comp. Struct., 239-112032.

Mazumder A., Wang Y., and Yen C.F. 2018. “Conforming Element Mesh for Realistic Textile Composite Micro-Geometry,†in Proceedings of the 33rd American Society for Composites Technical Conference, Seattle, Washington.

DFMA. www.fabricmechanics.com.

Isart N., El Said B., Ivanov D. S., Hallett S. R., Mayugo J. A., and N. Blanco. 2015. “Internal geometric modelling of 3D woven composites: A comparison between different approaches,†Compos. Struct., vol. 132, pp. 1219–1230.

Ewert A., Drach B., Vasylevskyi K., and Tsukrov I. 2020. “Predicting the overall response of an orthogonal 3D woven composite using simulated and tomography-derived geometry,†Compos. Struct., vol. 243, p. 112169.

Huang L. 2013. “Determining micro- and macro- geometry of fabric and fabric reinforced Composites,†Manhattan KS, USA: Kansas State University, [Ph.D. thesis].

Bucki M., Lobos C., Payan Y., and Hitschfeld N. 2011. “Jacobian-based repair method for finite element meshes after registration,†Eng. Comput., 27(3):285–97.

Grandy, J. 1997. “Efficient computation of volume of hexahedral cells,†United States.

Chamis C., 1989. "Mechanics of Composite Materials: Past, Present, and Future," Journal of Composites, Technology and Research, 11, no. 1 (0): 3-14.

Li S. 2007. “Boundary conditions for unit cells from periodic microstructures and their implications,†Compos. Sci. and Tech., 68(9):1962-74.

Riva E., and Nicoletto G. 2005. “Modeling and prediction of the mechanical properties of woven laminates by the finite element method,†WIT Trans. On State of Art in Sci. and Engg., vol. 21, ISSN 1755-8336.

Blackketter D., Walrath D., and Hansen A. 1993. “Modeling damage in a plain weave fabric reinforced composite material,†J. Compos. Tech. Res., 15(2):136-142.

Li J., Zhao M., Gao X., Wan X., and Zhou J. 2014. “Modeling the stiffness, strength, and progressive failure behavior of woven fabric-reinforced composites,†J. Compos. Mat., 48(6):735-747.

Wang L., Wu J., Chen C., Zheng C., Li B., Joshi S.C., and Zhou K. 2017. “Progressive failure analysis of 2D woven composites at the meso-micro scale,†Comp. Struct., 178:395-405.

Ferreira L.M., Graciani E., and Paris F. 2014. “Progressive damage study of NCF composites under compressive loading,†in Proceedings of the 16th European Conference on Composite Materials, Seville, Spain.

Barbero E.J., Lonetti P., and Sikkil K.K. 2005. “Finite element continuum damage modeling of plain weave reinforced composites,†Composites Part B: engineering, 37:137-147.

Barbero E.J., and Shahbazi M. 2017. “Determination of material properties for ANSYS Progressive Damage Analysis of Laminated Composites,†Comp. Struct., 176:768-779.

ANSYS Mechanical APDL Material Reference, Release 15.0, 2013.

Pankow M., Justusson B., Riosbass M., Waas A.M., and Yen C.F. 2019. “Effect of fiber architecture on tensile fracture of 3D woven textile compositesâ€, Comp. Struct., 225:111139.

Gu H., and Zhili Z. 2002. “Tensile behavior of 3d woven composites by using different fabric structures,†Mater. Des., 3:671–674.

S2 Glass fiber properties. http://www.matweb.com/.

Composite materials and structures, IIT KGP, Chapter 4: Composite properties - micromechanics, http://www.ae.iitkgp.ac.in/ebooks/chapter4.html.


Refbacks

  • There are currently no refbacks.