

Sub-Microscale Speckle Pattern Creation on Single Carbon Fibers for In-Situ DIC Experiments
Abstract
10.12783/asc36/35902
References
Aroush DR Ben, Maire E, Gauthier C, Youssef S, Cloetens P, Wagner HD.
A study of fracture of unidirectional composites using in situ high-resolution
synchrotron X-ray microtomography. Compos Sci Technol 2006;66:1348–
doi:10.1016/j.compscitech.2005.09.010.
Swolfs Y, Morton H, Scott AE, Gorbatikh L, Reed PAS, Sinclair I, et al.
Synchrotron radiation computed tomography for experimental validation of a
tensile strength model for unidirectional fibre-reinforced composites.
Compos Part A Appl Sci Manuf 2015;77:106–13.
doi:10.1016/j.compositesa.2015.06.018.
Rosen-Tensile-failure-of-fibrous-comp-1964.pdf n.d.
Phoenix SL, Sexsmith RG. Clamp Effects in Fiber Testing. J Compos Mater
;6:322–37. doi:10.1177/002199837200600311.
Watanabe J, Tanaka F, Okuda H, Okabe T. Tensile strength distribution of
carbon fibers at short gauge lengths. Adv Compos Mater 2014;23:535–50.
doi:10.1080/09243046.2014.915120.
Okuda H, Young RJ, Tanaka F, Watanabe J, Okabe T. Tensile failure
phenomena in carbon fibres. Carbon N Y 2016;107:474–81.
doi:10.1016/j.carbon.2016.06.037.
Shioya M, Inoue H, Sugimoto Y. Reduction in tensile strength of
polyacrylonitrile-based carbon fibers in liquids and its application to defect
analysis. Carbon N Y 2013;65:63–70. doi:10.1016/j.carbon.2013.07.102.
Sugimoto Y, Shioya M, Kageyama K. Determination of intrinsic strength of
carbon fibers. Carbon N Y 2016;100:208–13.
doi:10.1016/j.carbon.2016.01.021.
Sutton MA, Li N, Joy DC, Reynolds AP, Li X. Scanning electron
microscopy for quantitative small and large deformation measurements Part
I: SEM imaging at magnifications from 200 to 10,000. Exp Mech
;47:775–87. doi:10.1007/s11340-007-9042-z.
Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, et al.
Scanning electron microscopy for quantitative small and large deformation
measurements Part II: Experimental validation for magnifications from 200
to 10,000. Exp Mech 2007;47:789–804. doi:10.1007/s11340-007-9041-0.
Sockalingam S, Gillespie JW, Keefe M. Influence of multiaxial loading on
the failure of Kevlar KM2 single fiber. Text Res J 2018;88:483–98.
doi:10.1177/0040517516681961.
Sockalingam S, Thomas FD, Casem D, Gillespie JW, Weerasooriya T.
Failure of Dyneema® SK76 single fiber under multiaxial transverse loading.
Text Res J 2019;89:2659–73. doi:10.1177/0040517518798653.
Kammers AD, Daly S. Small-scale patterning methods for digital image
correlation under scanning electron microscopy. Meas Sci Technol 2011;22.
doi:10.1088/0957-0233/22/12/125501.
Hoefnagels JPM, van Maris MPFHL, Vermeij T. One-step deposition of
nano-to-micron-scalable, high-quality digital image correlation patterns for
high-strain in-situ multi-microscopy testing. Strain 2019;55:1–13.
doi:10.1111/str.12330.
Donnelly T, Krishnamurthy S, Carney K, McEvoy N, Lunney JG. Pulsed
laser deposition of nanoparticle films of Au. Appl Surf Sci 2007;254:1303–6.
doi:10.1016/j.apsusc.2007.09.033.
Agarwal NR, Neri F, Trusso S, Lucotti A, Ossi PM. Au nanoparticle arrays
produced by Pulsed Laser Deposition for Surface Enhanced Raman
Spectroscopy. Appl Surf Sci 2012;258:9148–52.
doi:10.1016/j.apsusc.2011.12.030.
Domingo C, Resta V, Sanchez-Cortes S, GarcÃa-Ramos J V., Gonzalo J.
Pulsed laser deposited au nanoparticles as substrates for surface-enhanced
vibrational spectroscopy. J Phys Chem C 2007;111:8149–52.
doi:10.1021/jp0710943.
Jing Y, Wang H, Chen X, Wang X, Wei H, Guo Z. Pulsed laser deposited Ag
nanoparticles on nickel hydroxide nanosheet arrays for highly sensitive
surface-enhanced Raman scattering spectroscopy. Appl Surf Sci
;316:66–71. doi:10.1016/j.apsusc.2014.07.169.
Zhang RL, Huang YD, Su D, Liu L, Tang YR. Influence of sizing molecular
weight on the properties of carbon fibers and its composites. Mater Des
;34:649–54. doi:10.1016/j.matdes.2011.05.021.
Alfonso E, Olaya J, Cubillos G. Thin Film Growth Through Sputtering
Technique and Its Applications. Cryst - Sci Technol 2012.
doi:10.5772/35844.
Jung YS, Lee DW, Jeon DY. Influence of dc magnetron sputtering
parameters on surface morphology of indium tin oxide thin films. Appl Surf
Sci 2004;221:136–42. doi:10.1016/S0169-4332(03)00862-6.
Tomio T, Miki H, Tabata H, Kawai T, Kawai S. Control of electrical
conductivity in laser deposited SrTiO3 thin films with Nb doping. J Appl
Phys 1994;76:5886–90. doi:10.1063/1.358404.
Morintale E, Constantinescu C, Dinescu M. Thin films development by
pulsed laser-assisted deposition. Ann Univ Craiova, Phys 2010;20:43–56.
Li B, Zhang CR, Cao F, Wang SQ, Chen B, Li JS. Effects of fiber surface
treatments on mechanical properties of T700 carbon fiber reinforced BNSi3N4
composites. Mater Sci Eng A 2007;471:169–73.
doi:10.1016/j.msea.2007.03.022.
Gonzalo J, Perea A, Babonneau D, Afonso CN, Beer N, Barnes JP, et al.
Competing processes during the production of metal nanoparticles by pulsed
laser deposition. Phys Rev B - Condens Matter Mater Phys 2005;71:1–8.
doi:10.1103/PhysRevB.71.125420.
Schreier H, Orteu JJ, Sutton MA. Image correlation for shape, motion and
deformation measurements: Basic concepts, theory and applications. 2009.
doi:10.1007/978-0-387-78747-3.
Yaofeng S, Pang JHL. Study of optimal subset size in digital image
correlation of speckle pattern images. Opt Lasers Eng 2007;45:967–74.
doi:10.1016/j.optlaseng.2007.01.012.
Crammond G, Boyd SW, Dulieu-Barton JM. Speckle pattern quality
assessment for digital image correlation. Opt Lasers Eng 2013;51:1368–78.
doi:10.1016/j.optlaseng.2013.03.014.
Dong YL, Pan B. A Review of Speckle Pattern Fabrication and Assessment
for Digital Image Correlation. Exp Mech 2017;57:1161–81.
doi:10.1007/s11340-017-0283-1.
Refbacks
- There are currently no refbacks.