

A Paris Law Based Mesh Independent Numerical Methodology for the Simulation of Fatigue Driven Delamination in Composites
Abstract
10.12783/asc36/35886
References
Thomas Jollivet, Catherine Peyrac, Fabien Lefebvre, Damage of Composite Materials, Procedia
Engineering, Volume 66, 2013, Pages 746-758.
Cantwell, W. J., & Morton, J. (1992). The significance of damage and defects and their detection in
composite materials: A review. The Journal of Strain Analysis for Engineering Design, 27(1), 29–
Mi, Y., Crisfield, M. A., Davies, G. A. O., & Hellweg, H. B. (1998). Progressive Delamination
Using Interface Elements. Journal of Composite Materials, 32(14), 1246–1272.
Ho-Cheng, H., and Dharan, C. K. H. (August 1, 1990). "Delamination During Drilling in
Composite Laminates." ASME. J. Eng. Ind. August 1990; 112(3): 236–239.
Wells, J.K., Beaumont, P.W.R. Debonding and pull-out processes in fibrous composites. J Mater
Sci 20, 1275–1284 (1985).
Chun-Hway Hsueh, Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites,
Materials Science and Engineering: A, Volume 123, Issue 1, 1990, Pages 1-11.
D.C. Prevorsek, H.B. Chin, A. Bhatnagar, Damage tolerance: design for structural integrity and
penetration, Composite Structures, Volume 23, Issue 2, 1993, Pages 137-148.
ASTM D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of
Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International, West
Conshohocken, PA, 2013, www.astm.org
ASTM D7905 / D7905M-19e1, Standard Test Method for Determination of the Mode II
Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,
ASTM International, West Conshohocken, PA, 2019, www.astm.org
ASTM D6671 / D6671M-19, Standard Test Method for Mixed Mode I-Mode II Interlaminar
Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, ASTM
International, West Conshohocken, PA, 2019, www.astm.org
Turón, A., Dávila, C., Camanho, P., & Costa, J. 2007. An Engineering Solution for Solving Mesh
Size Effects in the Simulation of Delamination with Cohesive Zone Models.
X. Lu, M. Ridha, B.Y. Chen, V.B.C. Tan, T.E. Tay. 2019. On cohesive element parameters and
delamination modelling, Engineering Fracture Mechanics, 206: 278-296.
S.R. Hallett, P.W. Harper, 2 - Modelling delamination with cohesive interface elements, Editor(s):
Pedro P. Camanho, Stephen R. Hallett, In Woodhead Publishing Series in Composites Science and
Engineering, Numerical Modelling of Failure in Advanced Composite Materials, Woodhead
Publishing, 2015, Pages 55-72.
R. Krueger, 1 - The virtual crack closure technique for modeling interlaminar failure and
delamination in advanced composite materials, Editor(s): Pedro P. Camanho, Stephen R. Hallett, In
Woodhead Publishing Series in Composites Science and Engineering, Numerical Modelling of
Failure in Advanced Composite Materials, Woodhead Publishing, 2015, Pages 3-53,
S. Karmakov, F. Cepero-MejÃas, J.L. Curiel-Sosa, Numerical analysis of the delamination in CFRP
laminates: VCCT and XFEM assessment, Composites Part C: Open Access, Volume 2, 2020,
P.C. Paris, M.P. Gomez, W.E. Anderson A rational analytic theory of fatigue Trend Eng, 13 (9)
(1961), pp. 9-14.
P.C. Paris, F. Erdogan A critical analysis of crack propagation laws J. Basic. Eng., 85 (4) (1963),
pp. 528-533.
A. Turon, J. Costa, P.P. Camanho, C.G. Dávila, Simulation of delamination in composites under
high-cycle fatigue, Composites Part A: Applied Science and Manufacturing, Volume 38, Issue 11,
, Pages 2270-2282.
Bak, B. L. V., Sarrado, C., Turon, A., and Costa, J. (June 20, 2014). "Delamination Under Fatigue
Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational
Methods." ASME. Appl. Mech. Rev. November 2014; 66(6): 060803.
Krueger, Ronald & Deobald, Lyle & Mabson, Gerald & Engelstad, Steve & Rao, M. & Gurvich,
Mark & Seneviratne, Waruna & Perera, Shenal & O’Brien, T. & Murri, Gretchen & Ratcliffe,
James & Dávila, Carlos & De Carvalho, Nelson. (2017). Guidelines for VCCT-based Interlaminar
Fatigue and Progressive Failure Finite Element Analysis.
Carvalho, N. and R. Krueger. “Modeling Fatigue Damage Onset and Progression in Composites
Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node
Method.†(2016).
Krueger, R. and N. Carvalho. “In Search of a Time Efficient Approach to Crack and Delamination
Growth Predictions in Composites.†(2016).
Bacarreza, Omar, and M. H. Aliabadi. “A Novel Methodology for Fatigue Delamination Growth
Analysis of Composites.†Key Engineering Materials, vol. 488–489, Trans Tech Publications, Ltd.,
Sept. 2011, pp. 763–766.
Fabrizio Magi, Dario Di Maio, Ibrahim Sever, Validation of initial crack propagation under
vibration fatigue by Finite Element analysis, International Journal of Fatigue, Volume 104, 2017,
Pages 183-194.
Pietropaoli E., Riccio A., “On the robustness of finite element procedures based on Virtual Crack
Closure Technique and fail release approach for delamination growth phenomena. Definition and
assessment of a novel methodology†Composites Science and Technology 70 (2010) 1288–13003.
Riccio, A., Raimondo, A., & Scaramuzzino, F. (2015). A robust numerical approach for the
simulation of skin–stringer debonding growth in stiffened composite panels under compression.
Composites Part B-engineering, 71, 131-142.
Riccio, A., Russo, A., Sellitto, A., & Raimondo, A. (2017). Development and application of a
numerical procedure for the simulation of the “Fibre Bridging†phenomenon in composite
structures. Composite Structures, 168, 104-119.
R. Krueger, "An Approach to Assess Delamination Propagation Simulation Capabilities in
Commercial Finite Element Codes," NASA/TM-2008-215123, 2008.
R. Krueger Development of a benchmark example for delamination fatigue growth prediction
NASA (July 2010) Tech. Rep. NASA/CR-2010-216723.
ASTM D6115-97(2019), Standard Test Method for Mode I Fatigue Delamination Growth Onset of
Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM International, West
Conshohocken, PA, 2019, www.astm.org.
Refbacks
- There are currently no refbacks.