

Progress on the Development of Shape-Memory-Alloy Metacomposites
Abstract
10.12783/asc36/35880
References
L. Sun et al., “Stimulus-responsive shape memory materials: a review,†Materials & Design,
vol. 33, pp. 577–640, 2012.
S. Saadat et al., “An overview of vibration and seismic applications of NiTi shape memory
alloy,†Smart Materials and Structures, vol. 11, no. 2, pp. 218–229, 2002, doi:
1088/0964-1726/11/2/305.
G. Costanza and M. E. Tata, “Shape memory alloys for aerospace, recent developments, and
new applications: A short review,†Materials, vol. 13, no. 8, p. 1856, 2020.
G. Song, N. Ma, and H.-N. Li, “Applications of shape memory alloys in civil structures,â€
Engineering structures, vol. 28, no. 9, pp. 1266–1274, 2006.
J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy
research, applications and opportunities,†Materials & Design (1980-2015), vol. 56, pp.
–1113, 2014, doi: https://doi.org/10.1016/j.matdes.2013.11.084.
V. Birman, “Effect of SMA dampers on nonlinear vibrations of elastic structures,†in Smart
Structures and Materials 1997: Mathematics and Control in Smart Structures, 1997, vol.
, pp. 268–276.
R. Krumme, J. Hayes, and S. Sweeney, “Structural damping with shape-memory alloys: one
class of devices,†in Smart Structures and Materials 1995: Passive Damping, 1995, vol.
, pp. 225–240.
P. W. Clark, I. D. Aiken, J. M. Kelly, M. Higashino, and R. Krumme, “Experimental and
analytical studies of shape-memory alloy dampers for structural control,†in Smart
Structures and Materials 1995: Passive Damping, 1995, vol. 2445, pp. 241–251.
A. Baz, K. Imam, and J. McCoy, “Active vibration control of flexible beams using shape
memory actuators,†Journal of Sound and Vibration, vol. 140, no. 3, pp. 437–456, 1990, doi:
https://doi.org/10.1016/0022-460X(90)90760-W.
A. R. Shahin, P. H. Meckl, and J. D. Jones, “Modeling of SMA tendons for active control of
structures,†Journal of Intelligent Material Systems and Structures, vol. 8, no. 1, pp. 51–70,
J. Hong, W. Yan, Y. Ma, D. Zhang, and X. Yang, “Experimental investigation on the
vibration tuning of a shell with a shape memory alloy ring,†Smart Materials and Structures,
vol. 24, no. 10, p. 105007, 2015.
E. Rustighi, M. J. Brennan, and B. R. Mace, “A shape memory alloy adaptive tuned
vibration absorber: design and implementation,†Smart Materials and Structures, vol. 14, no.
, p. 19, 2004.
C. Liang, C. A. Rogers, and C. R. Fuller, “Acoustic transmission and radiation analysis of
adaptive shape-memory alloy reinforced laminated plates,†Journal of Sound and Vibration,
vol. 145, no. 1, pp. 23–41, 1991.
R. Zhang, Q.-Q. Ni, A. Masuda, T. Yamamura, and M. Iwamoto, “Vibration characteristics
of laminated composite plates with embedded shape memory alloys,†Composite structures,
vol. 74, no. 4, pp. 389–398, 2006.
S. Pappada et al., “Mechanical and vibration characteristics of laminated composite plates
embedding shape memory alloy superelastic wires,†Journal of materials engineering and
performance, vol. 18, no. 5, pp. 531–537, 2009.
F. Casciati, L. Faravelli, and C. Fuggini, “Cable vibration mitigation by added SMA wires,â€
Acta Mechanica, vol. 195, no. 1, pp. 141–155, 2008.
A. Baz and J. Ro, “Thermo-dynamic characteristics of nitinol-reinforced composite beams,â€
Composites Engineering, vol. 2, no. 5–7, pp. 527–542, 1992.
H. Rezaei DA, M. Kadkhodaei, and H. Nahvi, “Analysis of nonlinear free vibration and
damping of a clamped–clamped beam with embedded prestrained shape memory alloy
wires,†Journal of Intelligent Material Systems and Structures, vol. 23, no. 10, pp. 1107–
, 2012.
H. Asadi, M. Bodaghi, M. Shakeri, and M. M. Aghdam, “An analytical approach for
nonlinear vibration and thermal stability of shape memory alloy hybrid laminated composite
beams,†European Journal of Mechanics-A/Solids, vol. 42, pp. 454–468, 2013.
M. Collet, E. Foltête, and C. Lexcellent, “Analysis of the behavior of a shape memory alloy
beam under dynamical loading,†European Journal of Mechanics-A/Solids, vol. 20, no. 4, pp.
–630, 2001.
R. Razavilar, A. Fathi, M. Dardel, and J. Arghavani Hadi, “Dynamic analysis of a shape
memory alloy beam with pseudoelastic behavior,†Journal of Intelligent Material Systems
and Structures, vol. 29, no. 9, pp. 1835–1849, 2018.
Y. Sutou, T. Omori, R. Kainuma, and K. Ishida, “Ductile Cu-Al-Mn based shape memory
alloys: General properties and applications,†Materials Science and Technology, vol. 24, no.
, pp. 896–901, 2008, doi: 10.1179/174328408X302567.
Y. Sutou, T. Omori, R. Kainuma, N. Ono, and K. Ishida, “Enhancement of Superelasticity in
Cu-Al-Mn-Ni Shape-Memory Alloys by Texture Control.â€
Y. Sutou, T. Omori, N. Koeda, R. Kainuma, and K. Ishida, “Effects of grain size and texture
on damping properties of Cu-Al-Mn-based shape memory alloys,†Materials Science and
Engineering A, vol. 438–440, no. SPEC. ISS., pp. 743–746, Nov. 2006, doi:
1016/j.msea.2006.02.085.
Y. Sutou, T. Omori, J. J. Wang, R. Kainuma, and K. Ishida, “Characteristics of Cu-Al-Mnbased
shape memory alloys and their applications,†Materials Science and Engineering A,
vol. 378, no. 1-2 SPEC. ISS., pp. 278–282, Jul. 2004, doi: 10.1016/j.msea.2003.12.048.
N. Koeda et al., “Damping Properties of Ductile Cu-Al-Mn-Based Shape Memory Alloys *
â€
Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma, and K. Ishida, “Effect of grain size
and texture on pseudoelasticity in Cu-Al-Mn-based shape memory wire,†Acta Materialia,
vol. 53, no. 15, pp. 4121–4133, Sep. 2005, doi: 10.1016/j.actamat.2005.05.013.
Y. Sutou, T. Omori, R. Kainuma, and K. Ishida, “Grain size dependence of pseudoelasticity
in polycrystalline Cu-Al-Mn-based shape memory sheets,†Acta Materialia, vol. 61, no. 10,
pp. 3842–3850, Jun. 2013, doi: 10.1016/j.actamat.2013.03.022.
U. S. Mallik and V. Sampath, “Effect of composition and ageing on damping characteristics
of Cu-Al-Mn shape memory alloys,†Materials Science and Engineering A, vol. 478, no. 1–
, pp. 48–55, Apr. 2008, doi: 10.1016/j.msea.2007.05.073.
R. Kainuma, S. Takahashi, and K. Ishida, “Ductile Shape Memory Alloys of the Cu-Al-Mn
System,†Journal de Physique IV, vol. 05, no. C8, pp. C8-961-C8-966, Dec. 1995, doi:
1051/jp4/199558961.
R. Kainuma, S. Takahashi, and K. Ishida, “Thermoelastic Martensite and Shape Memory
Effect in Ductile Cu-AI-Mn Alloys.â€
J. San Juan and M. L. Nó, “Damping behavior during martensitic transformation in shape
memory alloys,†in Journal of Alloys and Compounds, Jun. 2003, vol. 355, no. 1–2, pp. 65–
doi: 10.1016/S0925-8388(03)00277-9.
L. C. Brinson, “One-dimensional constitutive behavior of shape memory alloys:
thermomechanical derivation with non-constant material functions and redefined martensite
internal variable,†Journal of intelligent material systems and structures, vol. 4, no. 2, pp.
–242, 1993.
D. C. Lagoudas, Shape memory alloys: modeling and engineering applications. Springer,
J. G. Boyd and D. C. Lagoudas, “A thermodynamical constitutive model for shape memory
materials. Part I. The monolithic shape memory alloy,†International Journal of Plasticity,
vol. 12, no. 6, pp. 805–842, 1996.
D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, and P. Popov, “Constitutive model for
the numerical analysis of phase transformation in polycrystalline shape memory alloys,â€
International Journal of Plasticity, vol. 32, pp. 155–183, 2012.
F. Auricchio, R. L. Taylor, and J. Lubliner, “Shape-memory alloys: macromodelling and
numerical simulations of the superelastic behavior,†Computer methods in applied
mechanics and engineering, vol. 146, no. 3–4, pp. 281–312, 1997.
S. Poorasadion, J. Arghavani, R. Naghdabadi, and S. Sohrabpour, “An improvement on the
Brinson model for shape memory alloys with application to two-dimensional beam element,â€
Journal of Intelligent Material Systems and Structures, vol. 25, no. 15, pp. 1905–1920, 2014.
M. Panico and L. C. Brinson, “A three-dimensional phenomenological model for martensite
reorientation in shape memory alloys,†Journal of the Mechanics and Physics of Solids, vol.
, no. 11, pp. 2491–2511, 2007, doi: https://doi.org/10.1016/j.jmps.2007.03.010.
J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis Second Edition: with
applications to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford, 2014.
J. N. Reddy and P. Mahaffey, “Generalized beam theories accounting for von Kármán
nonlinear strains with application to buckling,†Journal of Coupled Systems and Multiscale
Dynamics, vol. 1, no. 1, pp. 120–134, 2013.
“ABAQUS User Subroutines Reference Manual.†ABAQUS, 2006.
Refbacks
- There are currently no refbacks.