Open Access Open Access  Restricted Access Subscription Access

Effects of Strain Rate, Transverse Pressure and Fiber Surface Roughness on Traction Laws of Glass Fiber Epoxy Interphases



In this study, molecular dynamic simulations (MD) are used to study the effects of strain rate, and transverse pressure (i.e. residual stress and impact loading) on the traction separation response of a glass fiber epoxy interphase where the fiber has nanoscale surface roughness. The interphase model is prepared with and without monolayer glycidoxypropyltrimethoxy silane (GPS). The glass fiber surface roughness profile is created from a surface map measured experimentally using atomic force microscopy (AFM). To develop the atomistic interphase model, first we deposit GPS molecules (in case of interphase with silane) on the silica (fiber) surface and react them with the silica surface through a condensation reaction. A mixture of Epon828-Jeffamine® D-230 is then placed on the silica surface and equilibrated using the general AMBER force field. The interphase structure is finally created through the epoxide-amine curing reaction among the epoxy, silane and amine using a cross-linking algorithm. The model is then subjected to Mode-I and Mode-II loading with the reactive force field ReaxFF to predict the interphase traction-separation responses and failure loci within the interphase. To investigate the effects of strain rate and transverse pressure (in case of Mode-II), interphase loading is carried out at 109/s to 1011/s strain rates and 1 atm to 4 GPa pressure that is applied normal to the fiber surface. Simulation results suggest that the Mode-II interphase traction-separation response improves with the increase in strain rate and transverse pressure. Strain-rate and pressure dependent MD traction data can be used to bridge length scales as input into micromechanics and meso-scale models.


Full Text:



Chou, T. W., J. R. Vinson. 1975. Composite Materials and Their Use in Structures, Elsevier–Applied Science, London.

Kaw, A. K. 2006. Mechanics of Composite Materials, Taylor & Francis.

Mallick, P. K. 2008. Fiber-Reinforced Composites: Materials, Manufacturing, and Design. Taylor & Francis.

Drzal, L. T., 1986. The interphase in epoxy composites. Advances in Polymer Science, 75:1-32.

F.M. Zhao and N. Takeda. Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites. Part I: experiment results. Composites: Part A 31 (2000) 1203–1214.

B. K. LARSON and L. 7-. DRZAL. Glass fibre sizing/matrix interphase formation in liquid composite moulding: effects on fibre/matrix adhesion and mechanical properties. COMPOSITES. VOLUME 25. NUMBER 7. 1994; 711-721.

Tanoglu, M., S. Ziaee, S. H. McKnight, G. R. Palmese, and J. W. Gillespie Jr. 2001. “Investigation of the Properties of Fiber/Matrix Interphase formed due to the Glass Fiber Sizings,” J. Mater. Sci., 36(12):3041-3053.

Tanoglu, M., S. H. McKnight, G. R. Palmese, and J. W. Gillespie Jr. 2001. “The Effects of Glass-Fiber Sizings on the Strength and Energy Absorption of the Fiber/Matrix Interphase under High Loading Rates,” Compos. Sci. Technol., 61(2):205-220.

Chou, S., L. S. Lin, and J. T. Yeh. 1999. “Effect of Surface Treatment of Glass Fiber on Adhesion to Phenolic Resin,” Polym. Polym. Compos., 7(1):21–31.

Gao, X., R. E. Jensen, W. Li, J. Deitzel, S. H. McKnight, and J. W. Gillespie Jr. 2008. “Effect of Fiber Surface Texture Created from Silane Blends on the Strength and Energy Absorption of the Glass Fiber/Epoxy Interphase,” J. Compos. Mater., 42:513.

Wu HF, Dwight DW, Huff NT (1997) Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites. Compos Sci Technol 57:975–983.

Sockalingam, S., M. Dey, J. W. Gillespie Jr., and M. Keefe. 2014. Finite element analysis of the microdroplet test method using cohesive zone model of the fiber/matrix interface. Composites: Part A 56:239–247.

Chowdhury, S. C., H. B. Z.(Gama), and J. W. Gillespie Jr., 2016. “Molecular Dynamics Simulations of the Structure and Mechanical Properties of Silica Glass using Reaxff,” J. Mater. Sci., 51:10139-10159.

Chowdhury, S. C., E. A. Wise, R. Ganesh and J. W. Gillespie Jr. 2019. “Effects of Surface Crack on the Mechanical Properties of Silica: A Molecular Dynamics Simulation Study”, Engineering Fracture Mechanics, 207:99-108.

Chowdhury S. C., Elder R. M., Sirk T. W., and Gillespie Jr. J. W. 2020. “Epoxy resin thermo-mechanics and failure modes: Effects of cure and cross-linker length”, Composites Part B, 186:107814.

Chowdhury, S. C., R. M. Elder, T. W. Sirk, A. C.T. van Duin, and J. W. Gillespie Jr., 2017. “Modeling of glycidoxypropyltrimethoxy silane compositions using molecular dynamics simulations,” Comp. Mater. Sci., 140:82–88.

Chowdhury, S. C., and J. W. Gillespie Jr., 2017. “Silica - Silane Coupling Agent Interphase Properties using Molecular Dynamics Simulations,” J. Mater. Sci., 52:12981-12998.

Chowdhury S. C., R. Prosser, Elder R. M., Sirk T. W., and Gillespie Jr. J. W., 2021. “Glass fiber-epoxy interactions in the presence of silane: A molecular dynamics study”, Applied Surface Science 542:148738.

Plimpton, S. 1995. “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1):1-19.

Stukowski, A. 2010 “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling Simul,” Mater. Sci. Eng., 18:015012

Dera, P., J. D. Lazarz, V. B. Prakapenka, M. Barkley, R. T. Downs, 2011. New insights into the high-pressure polymorphism of SiO2 cristobalite. Phys Chem Miner 38:517 -529.

Wang, J., R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. 2004. “Development and Testing of a General Amber Force Field,” J. Comput. Phys., 25(9):1157-1174.

Wang, J., W. Wang, P. A. Kollman, and D. A. Case. 2006. “Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations,” J. Mol. Graph. Model, 25(2):247-260.

Sirk, T. W., K. S. Khare, M. Karim, J. L. Lenhart, J. W. Andzelm, G. B. McKenna, and R. Khare. 2013 “High strain rate mechanical properties of a cross-linked epoxy across the glass transition,” Polymer, 54(26):7048-7057.

Senftle, T., Hong, S., Islam, M., Kylasa, S. B., Zheng, Y., Shin, Y. K., Junkermeier, C., Engel-Herbert, R., Janik, M., Aktulga, H. M., Verstraelen, T., Grama, A. Y., van Duin, A. C. T. “The Reaxff Reactive Force-Field: Development, Applications, and Future Directions.” npj Computational Materials (2016): 15011.

Chaikin P. M., T. C. Lubensky. 2000. Principles of condensed matter physics. Cambridge University Press, Cambridge.

Tamrakar, S., R. Ganesh, S. Sockalingam, B. Z. Haque, and J. W. Gillespie Jr., 2020. Strain rate-dependent large deformation inelastic behavior of an epoxy resin. Journal of Composite Materials, 54:71-87.

Christopher S. M. et al. 2021. Nanoscale to Mesoscale Modeling of Ballistic Impact on Plain Weave Composite. (Manuscript in preparation).

Haque B. Z. et al. 2021. Micromechanical Stochastic Modeling of Punch Crush and Punch Shear of Unidirectional Composite. (Manuscript in preparation).


  • There are currently no refbacks.