

Molecular Dynamics Simulations of Furan Resin (Polyfurfuryl Alcohol): Predicting Mechanical Properties
Abstract
10.12783/asc36/35847
References
Tondi, G., Cefarin, N., Sepperer, T., D’Amico, F., Berger, R. J., Musso, M., Birarda, G., Reyer,
A., Schnabel, T., & Vaccari, L. (2019). Understanding the Polymerization of Polyfurfuryl
Alcohol: Ring Opening and Diels-Alder Reactions. Polymers, 11(12), 2126.
https://doi.org/10.3390/polym11122126
Kim, J., Kim, M.-S., Hahm, H.-S., & Lim, Y.-S. (2004). Structural and property changes in
glass-like carbons formed by heat treatment and addition of filler. Macromolecular Research,
(4), 399–406. https://doi.org/10.1007/bf03218418
KHERROUB, D. J. A. M. A. L. E. D. D. I. N. E., BELBACHIR, M. O. H. A. M. M. E. D., &
LAMOURI, S. A. A. D. (2015). Synthesis of poly(furfuryl alcohol)/montmorillonite
nanocomposites by direct in-situ polymerization. Bulletin of Materials Science, 38(1), 57–63.
https://doi.org/10.1007/s12034-014-0818-3
Iroegbu, A. O., & Hlangothi, S. P. (2018). Effects of the Type of Catalyst on the Polymerisation
Mechanism of Furfuryl Alcohol and its Resultant Properties. Chemistry Africa, 1(3-4), 187–197.
https://doi.org/10.1007/s42250-018-0017-5
Chemical, T. F. (2018, June 26). PFA THERMOSETS IN COMPOSITE APPLICATIONS.
Belgium, Geel; TransFurans Chemical.
Heinz, H., Lin, T.-J., Kishore Mishra, R., & Emami, F. S. (2013). Thermodynamically
Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures:
The INTERFACE Force Field. Langmuir, 29(6), 1754–1765. https://doi.org/10.1021/la3038846
Patil, S., Shah, S., Deshpande, P., Kashmari, K., Olaya, M., Odegard, G., Maiaru, M. (2020). Multiscale
Approach to Predict Cure-Induced Residual Stresses in an Epoxy System. American Society
for Composites 2020. https://doi.org/10.12783/asc35/34890
Patil, S., Shah, S., Deshpande, P., Kashmari, K., Odegard, G., Maiaru, M. (2019). Prediction of
Residual Stress Build-up in Polymer Matrix Composite During Cure using a Two-scale Approach.
American Society for Composites 2019. https://doi.org/10.12783/asc34/31378
Deshpande, P., Shah, S., Patil, S., Kashmari, K., Olaya, M., Odegard, G., Maiaru, M. (2020).
Multiscale Modelling of the Cure Process in Thermoset Polymers Using ICME. American Society
for Composites 2020. https://doi.org/10.12783/asc35/34889
Deshpande, P., Shah, S., Patil, S., Kashmari, K., Odegard, G., Maiaru, M. (2019). A Multi-scale
Approach for Modelling the Cure of Thermoset Polymers within ICME. American Society for
Composites 2019. https://doi.org/10.12783/asc34/31379
Gissinger, J. R., Jensen, B. D., & Wise, K. E. (2017). Modeling chemical reactions in classical
molecular dynamics simulations. Polymer, 128, 211–217.
https://doi.org/10.1016/j.polymer.2017.09.038
Al Mahmud, H., Radue, M. S., Chinkanjanarot, S., Pisani, W. A., Gowtham, S., &
Odegard, G. M. (2019). Multiscale modeling of carbon fiber- graphene nanoplatelet-epoxy
hybrid composites using a reactive force field. Composites Part B: Engineering, 172, 628–635.
https://doi.org/10.1016/j.compositesb.2019.05.035
Savage, G. (2012). Thermosetting resin matrix precursors. In Carbon-carbon composites (pp.
–150). essay, Springer-Science+Business Media, B.V.
Plimpton, S. (1993). Fast parallel algorithms for short-range molecular dynamics.
https://doi.org/10.2172/10176421
Kim, T., Assary, R. S., Marshall, C. L., Gosztola, D. J., Curtiss, L. A., & Stair, P. C. (2011).
Acid-Catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and
Thermodynamic Properties. ChemCatChem, 3(9), 1451–1458.
https://doi.org/10.1002/cctc.201100098
Refbacks
- There are currently no refbacks.