

Effect of Manufacturing on the Transverse Response of Thermoset Composites
Abstract
10.12783/asc36/35840
References
Galos J (2020) Thin-ply composite laminates: a review. Composite Structures
:111920. https://doi.org/10.1016/j.compstruct.2020.111920
Baran I, Cinar K, Ersoy N, et al (2017) A Review on the Mechanical Modeling
of Composite Manufacturing Processes. Arch Computat Methods Eng 24:365–
https://doi.org/10.1007/s11831-016-9167-2
Shah S, Plaka E, Schey M, et al (2021) Quantification of Thermoset Composite
Microstructures for Process Modeling. In: AIAA Scitech 2021 Forum. American
Institute of Aeronautics and Astronautics
Shah S, Schey M, Hu J, et al (2020) Microstructural Quantification and Virtual
Reconstruction of Polymer Matrix Composites. In: AIAA Scitech 2020 Forum.
American Institute of Aeronautics and Astronautics
Shah S, Plaka E, Schey M, et al (2020) In-Situ Characterization of Polymer
Matrix Composites and Progressive Damage Analysis of Virtually Reconstructed
Microstructures. In: Proceedings of the American Society for Composites —
Thirty-fifth Technical Conference
Maragoni L, Carraro PA, Quaresimin M (2018) Development, validation and
analysis of an efficient micro-scale representative volume element for
unidirectional composites. Composites Part A: Applied Science and
Manufacturing 110:268–283. https://doi.org/10.1016/j.compositesa.2018.04.025
Ghayoor H, Hoa SV, Marsden CC (2018) A micromechanical study of stress
concentrations in composites. Composites Part B: Engineering 132:115–124.
https://doi.org/10.1016/j.compositesb.2017.09.009
Hu H, Cao D, Pavier M, et al (2018) Investigation of non-uniform gelation
effects on residual stresses of thick laminates based on tailed FBG sensor.
Composite Structures 202:1361–1372.
https://doi.org/10.1016/j.compstruct.2018.06.074
Sorrentino L, Esposito L, Bellini C (2017) A new methodology to evaluate the
influence of curing overheating on the mechanical properties of thick FRP
laminates. Composites Part B: Engineering 109:187–196.
https://doi.org/10.1016/j.compositesb.2016.10.064
Rabearison N, Jochum Ch, Grandidier JC (2009) A FEM coupling model for
properties prediction during the curing of an epoxy matrix. Computational
Materials Science 45:715–724. https://doi.org/10.1016/j.commatsci.2008.11.007
Parlevliet PP, Bersee HEN, Beukers A (2007) Residual stresses in thermoplastic
composites – a study of the literature. Part III: Effects of thermal residual
stresses. Composites Part A: Applied Science and Manufacturing 38:1581–1596.
https://doi.org/10.1016/j.compositesa.2006.12.005
Chekanov YuA, Korotkov VN, Rozenberg BA, et al (1995) Cure shrinkage
defects in epoxy resins. Polymer 36:2013–2017. https://doi.org/10.1016/0032-
(95)91446-E
Shah S, Maiaru M (2018) Microscale Analysis of Virtually Cured Polymer
Matrix Composites Accounting for Uncertainty in Matrix Properties During
Manufacturing. Proceedings of the American Society for Composites — Thirtythird
Technical Conference 0: https://doi.org/10.12783/asc33/25958
Maiarù M, D’Mello RJ, Waas AM (2018) Characterization of intralaminar
strengths of virtually cured polymer matrix composites. Composites Part B:
Engineering 149:285–295. https://doi.org/10.1016/j.compositesb.2018.02.018
Maiaru M Effect of uncertainty in matrix fracture properties on the transverse
strength of fiber reinforced polymer matrix composites. In: 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference. American Institute of Aeronautics and Astronautics
D’Mello RJ, Maiarù M, Waas AM (2016) Virtual manufacturing of composite
aerostructures. The Aeronautical Journal 120:61–81.
https://doi.org/10.1017/aer.2015.19
D’Mello RJ, Maiarù M, Waas AM (2015) Effect of the curing process on the
transverse tensile strength of fiber-reinforced polymer matrix lamina using
micromechanics computations. Integrating Materials 4:119–136.
https://doi.org/10.1186/s40192-015-0035-y
Mesogitis TS, Skordos AA, Long AC (2014) Uncertainty in the manufacturing
of fibrous thermosetting composites: A review. Composites Part A: Applied
Science and Manufacturing 57:67–75.
https://doi.org/10.1016/j.compositesa.2013.11.004
LLorca J, González C, Molinaâ€AldareguÃa JM, et al (2011) Multiscale Modeling
of Composite Materials: a Roadmap Towards Virtual Testing. Advanced
Materials 23:5130–5147. https://doi.org/10.1002/adma.201101683
Hui X, Xu Y, Wang J, Zhang W (2021) Microscale viscoplastic analysis of
unidirectional CFRP composites under the influence of curing process.
Composite Structures 266:113786.
https://doi.org/10.1016/j.compstruct.2021.113786
Hui X, Xu Y, Zhang W (2021) An integrated modeling of the curing process and
transverse tensile damage of unidirectional CFRP composites. Composite
Structures 263:113681. https://doi.org/10.1016/j.compstruct.2021.113681
He C, Ge J, Qi D, et al (2019) A multiscale elasto-plastic damage model for the
nonlinear behavior of 3D braided composites. Composites Science and
Technology 171:21–33. https://doi.org/10.1016/j.compscitech.2018.12.003
Yang L, Yan Y, Ma J, Liu B (2013) Effects of inter-fiber spacing and thermal
residual stress on transverse failure of fiber-reinforced polymer–matrix
composites. Computational Materials Science 68:255–262.
https://doi.org/10.1016/j.commatsci.2012.09.027
Zhao LG, Warrior NA, Long AC (2006) A micromechanical study of residual
stress and its effect on transverse failure in polymer–matrix composites.
International Journal of Solids and Structures 43:5449–5467.
https://doi.org/10.1016/j.ijsolstr.2005.08.012
Danzi F, Fanteria D, Panettieri E, Mancino MC (2019) A numerical micromechanical
study on damage induced by the curing process in carbon/epoxy
unidirectional material. Composite Structures 210:755–766.
https://doi.org/10.1016/j.compstruct.2018.11.059
Kamal MR (1974) Thermoset characterization for moldability analysis. Polymer
Engineering & Science 14:231–239. https://doi.org/10.1002/pen.760140312
Plepys A, Vratsanos MS, Farris RJ (1994) Determination of residual stresses
using incremental linear elasticity. Composite Structures 27:51–56.
https://doi.org/10.1016/0263-8223(94)90066-3
Plepys AR, Farris RJ (1990) Evolution of residual stresses in threedimensionally
constrained epoxy resins. Polymer 31:1932–1936.
https://doi.org/10.1016/0032-3861(90)90019-U
Bogetti TA, John W. Gillespie J (2016) Process-Induced Stress and Deformation
in Thick-Section Thermoset Composite Laminates: Journal of Composite
Materials. https://doi.org/10.1177/002199839202600502
Zhang JT, Zhang M, Li SX, et al (2016) Residual stresses created during curing
of a polymer matrix composite using a viscoelastic model. Composites Science
and Technology 130:20–27. https://doi.org/10.1016/j.compscitech.2016.05.002
Ding A, Li S, Wang J, Zu L (2015) A three-dimensional thermo-viscoelastic
analysis of process-induced residual stress in composite laminates. Composite
Structures 129:60–69. https://doi.org/10.1016/j.compstruct.2015.03.034
Adolf DB, Chambers RS (2007) A thermodynamically consistent, nonlinear
viscoelastic approach for modeling thermosets during cure. Journal of Rheology
:23–50. https://doi.org/10.1122/1.2360670
Lange J, Toll S, MÃ¥nson J-AE, Hult A (1997) Residual stress build-up in
thermoset films cured below their ultimate glass transition temperature. Polymer
:809–815. https://doi.org/10.1016/S0032-3861(96)00584-8
White SR, Hahn HT (1992) Process Modeling of Composite Materials: Residual
Stress Development during Cure. Part I. Model Formulation. Journal of
Composite Materials 26:2402–2422.
https://doi.org/10.1177/002199839202601604
D’Mello RJ, Waas AM (2017) Virtual curing of textile polymer matrix
composites. Composite Structures 178:455–466.
https://doi.org/10.1016/j.compstruct.2017.05.045
Heinrich C, Aldridge M, Wineman AS, et al (2013) The role of curing stresses in
subsequent response, damage and failure of textile polymer composites. Journal
of the Mechanics and Physics of Solids 61:1241–1264.
https://doi.org/10.1016/j.jmps.2012.12.005
Heinrich C, Aldridge M, Wineman AS, et al Generation of heat and stress during
the cure of polymers used in fiber composites. International Journal of
Engineering Science 53:85–111
Ng WH, Salvi AG, Waas AM (2010) Characterization of the in-situ non-linear
shear response of laminated fiber-reinforced composites. Composites Science
and Technology 70:1126–1134.
https://doi.org/10.1016/j.compscitech.2010.02.024
Song S, Waas AM, Shahwan KW, et al (2009) Compression response, strength
and post-peak response of an axial fiber reinforced tow. International Journal of
Mechanical Sciences 51:491–499. https://doi.org/10.1016/j.ijmecsci.2009.03.008
Yerramalli CS, Waas AM (2002) In Situ Matrix Shear Response Using Torsional
Test Data of Fiber Reinforced Unidirectional Polymer Composites. J Eng Mater
Technol 124:152–159. https://doi.org/10.1115/1.1446471
Huang Z-M, Xin L-M (2017) In situ strengths of matrix in a composite. Acta
Mech Sin 33:120–131. https://doi.org/10.1007/s10409-016-0611-1
Huang Z-M, Liu L (2014) Assessment of composite failure and ultimate strength
without experiment on composite. Acta Mech Sin 30:569–588.
https://doi.org/10.1007/s10409-014-0040-y
Liu L, Huang Z-M (2014) Stress concentration factor in matrix of a composite
reinforced with transversely isotropic fibers. Journal of Composite Materials
:81–98. https://doi.org/10.1177/0021998312469237
Sanei SHR, Barsotti EJ, Leonhardt D, Fertig RS (2017) Characterization,
synthetic generation, and statistical equivalence of composite microstructures.
Journal of Composite Materials 51:1817–1829.
https://doi.org/10.1177/0021998316662133
Romanov V, Lomov SV, Swolfs Y, et al (2013) Statistical analysis of real and
simulated fibre arrangements in unidirectional composites. Composites Science
and Technology 87:126–134. https://doi.org/10.1016/j.compscitech.2013.07.030
Wang Z, Wang X, Zhang J, et al (2011) Automatic generation of random
distribution of fibers in long-fiber-reinforced composites and mesomechanical
simulation. Materials & Design 32:885–891.
https://doi.org/10.1016/j.matdes.2010.07.002
Vaughan TJ, McCarthy CT (2010) A combined experimental–numerical
approach for generating statistically equivalent fibre distributions for high
strength laminated composite materials. Composites Science and Technology
:291–297. https://doi.org/10.1016/j.compscitech.2009.10.020
Trias D, Costa J, Turon A, Hurtado JE (2006) Determination of the critical size
of a statistical representative volume element (SRVE) for carbon reinforced
polymers. Acta Materialia 54:3471–3484.
https://doi.org/10.1016/j.actamat.2006.03.042
Wongsto A, Li S (2005) Micromechanical FE analysis of UD fibre-reinforced
composites with fibres distributed at random over the transverse cross-section.
Composites Part A: Applied Science and Manufacturing 36:1246–1266.
https://doi.org/10.1016/j.compositesa.2005.01.010
Buryachenko VA, Pagano NJ, Kim RY, Spowart JE (2003) Quantitative
description and numerical simulation of random microstructures of composites
and their effective elastic moduli. International Journal of Solids and Structures
:47–72. https://doi.org/10.1016/S0020-7683(02)00462-6
Byström J (2003) Influence of the inclusions distribution on the effective
properties of heterogeneous media. Composites Part B: Engineering 34:587–592.
https://doi.org/10.1016/S1359-8368(03)00064-7
Zeman J, Å ejnoha M (2001) Numerical evaluation of effective elastic properties
of graphite fiber tow impregnated by polymer matrix. Journal of the Mechanics
and Physics of Solids 49:69–90. https://doi.org/10.1016/S0022-5096(00)00027-2
Gusev AA, Hine PJ, Ward IM (2000) Fiber packing and elastic properties of a
transversely random unidirectional glass/epoxy composite. Composites Science
and Technology 60:535–541. https://doi.org/10.1016/S0266-3538(99)00152-9
Yang S, Tewari A, Gokhale AM (1997) Modeling of Non-Uniform Spatial
Arrangements of Fibers in a Ceramic Matrix Composite. Acta Materialia
:3059–3069. https://doi.org/10.1016/S1359-6454(96)00394-1
Carey E (2017) Randomization algorithm for the micromechanical modeling of
fiber-reinforced Polymer Matrix Composites. https://cdmhub.org/resources/1459
Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mat
Constr 16:155–177. https://doi.org/10.1007/BF02486267
Pineda EJ, Bednarcyk BA, Waas AM, Arnold SM (2013) Progressive failure of a
unidirectional fiber-reinforced composite using the method of cells:
Discretization objective computational results. International Journal of Solids
and Structures 50:1203–1216. https://doi.org/10.1016/j.ijsolstr.2012.12.003
Refbacks
- There are currently no refbacks.