

Deep Convolutional Neural Network for Segmenting ïCT Images of Fiber Reinforcements
Abstract
10.12783/asc36/35823
References
M.A. Ali, R. Umer, K.A. Khan, W.J. Cantwell, Application of X-ray computed tomography for
the virtual permeability prediction of fiber reinforcements for liquid composite molding processes:
A review, Composites Science and Technology 184 (2019).
N. Naouar, E. Vidal-Salle, J. Schneider, E. Maire, P. Boisse, 3D composite reinforcement meso
F.E. analyses based on X-ray computed tomography, Composite Structures 132 (2015) 1094-1104.
I. Straumit, S.V. Lomov, M. Wevers, Quantification of the internal structure and automatic
generation of voxel models of textile composites from X-ray computed tomography data,
Composites Part A: Applied Science and Manufacturing 69 (2015) 150-158.
W. Wijaya, M.A. Ali, R. Umer, K.A. Khan, P.A. Kelly, S. Bickerton, An automatic methodology
to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes, Composites
Part A: Applied Science and Manufacturing 125 (2019).
N. Naouar, D. Vasiukov, C.H. Park, S.V. Lomov, P. Boisse, Meso-FE modelling of textile
composites and X-ray tomography, Journal of Materials Science 55(36) (2020) 16969-16989.
Y. Sinchuk, P. Kibleur, J. Aelterman, M.N. Boone, W. Van Paepegem, Variational and Deep
Learning Segmentation of Very-Low-Contrast X-ray Computed Tomography Images of
Carbon/Epoxy Woven Composites, Materials 13(4) (2020).
R. Karamov, L.M. Martulli, M. Kerschbaum, I. Sergeichev, Y. Swolfs, S.V. Lomov, Micro-CT
based structure tensor analysis of fibre orientation in random fibre composites versus high-fidelity
fibre identification methods, Composite Structures 235 (2020).
W. Huang, P. Causse, V. Brailovski, et al., Reconstruction of mesostructural material twin models
of engineering textiles based on Micro-CT Aided Geometric Modeling, Composites Part A:
Applied Science and Manufacturing 124 (2019).
M.A. Ali, Q. Guan, R. Umer, W.J. Cantwell, T. Zhang, Deep learning based semantic
segmentation of μCT images for creating digital material twins of fibrous reinforcements,
Composites Part A: Applied Science and Manufacturing 139 (2020).
I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, The MIT Press, Cambridge,
Massachusetts, 2016.
J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
-3440.
X. Liu, Z. Deng, Y. Yang, Recent progress in semantic image segmentation, Artificial Intelligence
Review 52(2) (2019) 1089-1106.
Y. Guo, Y. Liu, T. Georgiou, M.S. Lew, A review of semantic segmentation using deep neural
networks, International Journal of Multimedia Information Retrieval 7(2) (2018) 87-93.
F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, International
Conference on Learning Representations (ICLR), San Juan, Puerto Rico, (2016).
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable
convolution for semantic image segmentation, Proceedings of the European Conference on
Computer Vision (ECCV), (2018) 801-818.
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, (2016) 770-778.
MathWorks, MathWorks. https://www.mathworks.com. (Accessed Jan, 06 2021).
MathWorks, Help Center. https://www.mathworks.com/help/index.html. (Accessed Jan, 06 2021).
M.A. Ali, R. Umer, K.A. Khan, A virtual permeability measurement framework for fiber
reinforcements using micro CT generated digital twins, International Journal of Lightweight
Materials and Manufacture 3(3) (2020) 204-216.
Refbacks
- There are currently no refbacks.