

Failure Prediction of Composite Materials Using Deep Neural Networks
Abstract
10.12783/asc36/35822
References
C. S. Lee, W. Hwang, H. C. Park, and K. S. Han. 1999. “Failure of carbon/epoxy composite
tubes under combined axial and torsional loading 1. Experimental results and prediction of
biaxial strength by the use of neural networks,†Composites Science and Technology,
(12):1779–1788.
A. T. Seyhan, G. Tayfur, M. Karakurt, and M. Tanoglu. 2005. “Artificial neural network (ANN)
prediction of compressive strength of VARTM processed polymer composites,†Computational
Materials Science, 34(1):99–105.
F. Sen, M. Aydin Komur, and O. Sayman. 2010. “Prediction of Bearing Strength of Two Serial
Pinned/Bolted Composite Joints using Artificial Neural Networks,†Journal of Composite
Materials, 44(11):1365–1377.
Gurney, K. 1997. An introduction to neural networks. UCL Press.
Ketkar, N. 2017. Deep learning with Python: a hands-on introduction. Apress.
Goodfellow, I., Bengio, Y., and Courville, A. 2016. Deep Learning. MIT Press.
Soden, P. D., Hinton, M. J., and Kaddour, A. S. 2004. “Chapter 2.1 - Lamina properties, lay-up
configurations and loading conditions for a range of fibre reinforced composite laminates,†in
Failure Criteria in Fibre-Reinforced-Polymer Composites, Oxford: Elsevier, pp. 30–51.
Soden, P. D., Hinton, M. J., and Kaddour, A. S., 2004. “Chapter 2.2 - Biaxial test results for
strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates:
Failure exercise benchmark data,†in Failure Criteria in Fibre-Reinforced-Polymer Composites,
Oxford: Elsevier, pp. 52–96.
Google Colaboratoy. (2019). Online. Available: https://colab.research.google.com/
Python Version 3.8. (2019). Python Software Foundation. Online. Available:
http://www.python.org
PyTorch: An Imperative Style, High-Performance Deep Learning Library. (2019). Facebook,
Inc. Online. Available: https://pytorch.org/
Kuraishi, A., Tsai, S. W., and Liu, K. K. S. 2004. “Chapter 5.9 - A progressive quadratic failure
criterion, part B,†in Failure Criteria in Fibre-Reinforced-Polymer Composites, M. J. Hinton,
A. S. Kaddour, and P. D. Soden, Eds. Oxford: Elsevier, pp. 903–921.
Cuntze, R. G. 2004. “Chapter 5.13 - The predictive capability of failure mode concept-based
strength criteria for multi-directional laminates—Part B,†in Failure Criteria in Fibre-
Reinforced-Polymer Composites, M. J. Hinton, A. S. Kaddour, and P. D. Soden, Eds. Oxford:
Elsevier, pp. 976–1025.
Puck, A., and Schürmann, H. 2004. “Chapter 5.6 - Failure analysis of FRP laminates by means
of physically based phenomenological models,†in Failure Criteria in Fibre-Reinforced-
Polymer Composites, M. J. Hinton, A. S. Kaddour, and P. D. Soden, Eds. Oxford: Elsevier, pp.
–876.
Refbacks
- There are currently no refbacks.