

Performance of Additively Manufactured Chopped Fiber Composites as a Function of Porosity
Abstract
10.12783/asc36/35754
References
Parandoush, P., & Lin, D. (2017). A review on additive manufacturing of
polymer-fiber composites. Composite Structures, 182, 36-53.
Tekinalp, H. L., Kunc, V., Velez-Garcia, G. M., Duty, C. E., Love, L. J.,
Naskar, A. K., Blue, C. A., & Ozcan, S. (2014). Highly oriented carbon
fiber–polymer composites via additive manufacturing. Composites Science
and Technology, 105, 144-150.
Frketic, J., Dickens, T., & Ramakrishnan, S. (2017). Automated
manufacturing and processing of fiber-reinforced polymer (FRP)
composites: An additive review of contemporary and modern techniques for
advanced materials manufacturing. Additive Manufacturing, 14, 69-86.
Lewicki, J. P., Rodriguez, J. N., Zhu, C., Worsley, M. A., Wu, A. S.,
Kanarska, Y., Horn, J. D., Duoss, E. B., Ortega, J. M., Elmer, W., Hensligh,
R., Fellini, R. A., & King, M. J. (2017). 3D-printing of meso-structurally
ordered carbon fiber/polymer composites with unprecedented orthotropic
physical properties. Scientific reports, 7(1), 1-14.
Van de Werken, N., Tekinalp, H., Khanbolouki, P., Ozcan, S., Williams, A.,
& Tehrani, M. (2020). Additively manufactured carbon fiber-reinforced
composites: State of the art and perspective. Additive Manufacturing, 31,
Wang, X., Zhao, L., Fuh, J. Y. H., & Lee, H. P. (2019). Effect of porosity on
mechanical properties of 3D printed polymers: Experiments and
micromechanical modeling based on X-ray computed tomography analysis.
Polymers, 11(7), 1154.
Liu, L., Zhang, B. M., Wang, D. F., & Wu, Z. J. (2006). Effects of cure
cycles on void content and mechanical properties of composite laminates.
Composite structures, 73(3), 303-309.
Seifert, D. R., Abbott, A., & Baur, J. (2021). Topology and alignment
optimization of additively manufactured, fiber-reinforced composites.
Structural and Multidisciplinary Optimization, 63(6), 2673-2683.
Pierson, H. A., Celik, E., Abbott, A., De Jarnette, H., Gutierrez, L. S.,
Johnson, K., Koerner, H., & Baur, J. W. (2019). Mechanical properties of
printed epoxy-carbon fiber composites. Experimental Mechanics, 59(6),
-857.
Croom, B. P., Abbott, A., Kemp, J. W., Rueschhoff, L., Smieska, L., Woll,
A., Stoupin, S., & Koerner, H. (2021). Mechanics of nozzle clogging during
direct ink writing of fiber-reinforced composites. Additive Manufacturing,
, 101701.
NIST. 5.3.3.4. Fractional factorial designs. Engineering Statistics
Handbook.
https://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm.
Nikishkov, Y., Airoldi, L., & Makeev, A. (2013). Measurement of voids in
composites by X-ray Computed Tomography. Composites Science and
Technology, 89, 89-97.
Nikishkov, Y., Seon, G., & Makeev, A. (2014). Structural analysis of
composites with porosity defects based on X-ray computed
tomography. Journal of Composite Materials, 48(17), 2131-2144.
Garcea, S. C., Wang, Y., & Withers, P. J. (2018). X-ray computed
tomography of polymer composites. Composites Science and
Technology, 156, 305-319.
Wang, Y., Burnett, T. L., Chai, Y., Soutis, C., Hogg, P. J., & Withers, P. J.
(2017). X-ray computed tomography study of kink bands in unidirectional
composites. Composite Structures, 160, 917-924.
Yang, Z., Ren, W., Sharma, R., McDonald, S., Mostafavi, M., Vertyagina,
Y., & Marrow, T. J. (2017). In-situ X-ray computed tomography
characterisation of 3D fracture evolution and image-based numerical
homogenisation of concrete. Cement and Concrete Composites, 75, 74-83.
Geise, L., Seifert, D. R., Abbott, A., Rapking, D., & Flores, M., (2021)
Harnessing Shape Optimization Techniques to Develop Novel Methods to
Determine Shear Properties in PMCs. Manuscript submitted for publication.
Salviato, M., Kirane, K., Ashari, S. E., Bažant, Z. P., & Cusatis, G. (2016).
Experimental and numerical investigation of intra-laminar energy
dissipation and size effect in two-dimensional textile
composites. Composites Science and Technology, 135, 67-75.
Ko, S., Yang, J., Tuttle, M. E., & Salviato, M. (2019). Effect of the platelet
size on the fracturing behavior and size effect of discontinuous fiber
composite structures. Composite Structures, 227, 111245.
Ko, S., Davey, J., Douglass, S., Yang, J., Tuttle, M. E., & Salviato, M.
(2019). Effect of the thickness on the fracturing behavior of discontinuous
fiber composite structures. Composites Part A: Applied Science and
Manufacturing, 125, 105520.
Li, W., Qiao, Y., Fenner, J., Warren, K., Salviato, M., Bažant, Z. P., &
Cusatis, G. (2021). Elastic and fracture behavior of three-dimensional plyto-
ply angle interlock woven composites: Through-thickness, size effect,
and multiaxial tests. Composites Part C: Open Access, 4, 100098.
Mahapatra, S.S., Patnaik, A. Optimization of wire electrical discharge
machining (WEDM) process parameters using Taguchi method. Int J Adv
Manuf Technol 34, 911–925 (2007). https://doi.org/10.1007/s00170-006-
-6
Antony, J., & Antony, F. J. (2001). Teaching the Taguchi method to
industrial engineers. Work study.
Yang, W. H. P., & Tarng, Y. S. (1998). Design optimization of cutting
parameters for turning operations based on the Taguchi method. Journal of
materials processing technology, 84(1-3), 122-129.
ASTMD5045 Standard Test Methods for Plane-strain Fracture Toughness
and Strain Energy Release Rate of Plastic Materials (1999)
Daniel, I. M., & Ishai, O. (2007). Engineering mechanics of composite
materials. Delhi, India: Oxford University Press.
Pikely, W., Bi, Z., & Pilkey, D. (2020). Peterson’s Stress Concentration
Factors. Hoboken, NJ, USA: John Wiley & Sons.
ASTM International. D5379/D5379M-19 Standard Test Method for Shear
Properties of Composite Materials by the V-Notched Beam Method. West
Conshohocken, PA; ASTM International, 2019. doi:
https://doi.org/10.1520/D5379_D5379M-19
Geise, L., & Flores, M. (2020). Novel Techniques for Investigating Shear of
PMCs. American Society for Composites 2020. doi: 10.12783/asc35/34871
Refbacks
- There are currently no refbacks.