Open Access Open Access  Restricted Access Subscription or Fee Access

Size Effect in Asphalt Mixture at Low Temperature: Type I and Type II

Augusto Cannone Falchetto, Michael P. Wistuba, Mihai O. Marasteanu

Abstract


Low temperature cracking is a serious distress for asphalt pavement built in cold regions, such as the northern U.S. and northern Europe. Therefore, accurate assessment of the strength and fracture properties of asphalt mixtures is fundamental for ensuring the long term integrity of the entire pavement structure. It has been shown that asphalt mixtures behave in a quasibrittle manner at low temperatures and, consequently, their nominal strength strongly depends on the structure size. Most of the research performed in the past has experimentally addressed this phenomenon either on unnotched or deep-notched specimens corresponding to Type I and Type II size effects, respectively. However, the evolution of the pavement conditions during the service life can lead to the formation and propagation of cracks which strongly affect the response of the material and, eventually, determine a complex size effect. In this paper a comprehensive experimental study is performed to evaluate the effect of different notch depths on the scaling law for quasibrittle fracture. Three-point bending tests are performed on plain and notched asphalt mixture beams of different sizes at low temperature. The results on unnotched specimens are analyzed through the Type I energetic-statistical size effect law (SEL) in combination with the weakest link model, while, in the case of deep notched specimens, the Type II SEL is used. A significant variation in the evolution of the SEL is observed with a dramatic decrease in strength over size and notch length. In addition, an empirical relation between the initial fracture energy, Gf, and the total fracture energy, GF, is found, and the characteristic length, cf, associated to the length of fracture process zone, is determined.

Keywords


size effect, asphalt mixture, three-point bending, nominal strength, fracture properties

Full Text:

PDF

Refbacks

  • There are currently no refbacks.