Drastic hardware simplification and cost reduction of Guided Wave (GW) based systems can be achieved by using piezoelectric transducers that, shaped according to a frequency based beam steering concept, present inherent directional capabilities exhibiting preferential radiation/sensing directions. In particular, directional GWs generation and sensing can be achieved by patterning the piezoelectric material lay-out and the electrodes. Frequency steerable acoustic transducers (FSATs) peculiar electrodes’ shape produces a spatial filtering effect which is frequency-dependent, so that a direct relationship can be established between the direction of propagation (wavenumber) and the spectral content of the transmitted/received signal. In this paper we present a novel design strategy of FSAT that enables enhanced sensor directivity by using a local variation of the density of the piezoelectric material.
doi: 10.12783/SHM2015/114