Counting Matching Numbers in Catacondensed Polyomino Systems

Haizhen Ren¹*, Deqing Xu¹, and Dongxia Zhu¹
¹School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China

Abstract. The matching counting problem has its own significance in mathematics and interconnection network of parallel computer system. Let G be a graph, the total matching number is the total number of independent edge subsets in G. For general graphs, the matching counting problem has proven to be intractable and computing the total matching number is $\#P$ hard. This has led to an emphasis on studying this problem in particular classes of graphs. The polyomino system is a finite 2-connected plane graph such that each interior face (or say a cell) is surrounded by a regular square of length one. The catacondensed polyomino system is a chain polyomino system and its central line forms a tree. In this paper, the reduction formulas of computing the total matching number of any catacondensed polyomino system via three kinds of transfer matrices are obtained.

1 Introduction

All graphs considered here are finite, undirected and simple. Let G be a graph. A matching of G is a set of edges of G which no two of them have common vertex. The total matching number (also called the number of monomer-dimer arrangements of G in statistical mechanics or the Hosoya index of G in mathematical chemistry), is defined as $Z(G) = \sum_{k=0}^{\infty} m(G,k)$, where $m(G,k)$ is defined to be the number of ways in which k mutually independent edges can be selected in G [1]. Counting all matchings of a graph is a general matching counting problem, which is not only physically intriguing but has a large variety of applications in chemistry and also, has its own significance in mathematics and interconnection network of parallel computer system [1-4]. For general graphs, the matching counting problem has proven to be intractable and computing the total matching number is $\#P$ hard. So, let's consider the specific graph. Polyominoes have a long and rich history, we convey for the origin polyominoes in [5]. A polyomino system is a finite two-connected plane graph so that each interior face (also called a cell) is surrounded by a regular square of length one. The catacondensed polyomino system is a chain polyomino system and its central line forms a tree. Up to now, the research on the catacondensed polyomino system is mostly focused on the path-like polyomino system, in which its central line forms a path [6-7]. In this paper, we consider the general catacondensed polyomino system. R. Cruz, C. A. Marín and J. Rada introduced the Hosoya vector of a graph at a given edge [8]. By this concept, we obtain some basic recurrence relations on the
total matching numbers of the path-like polyomino systems. Furthermore, the reduction formulas of computing the total matching number of any catacondensed polyomino system via three kinds of transfer matrices can be obtained.

2 Preliminary

Lemma 2.1. ([1, 2]) (1) Let G be a graph consisting of components G_1, G_2, \ldots, G_n, then $Z(G) = Z(G_1)Z(G_2) \cdots Z(G_n)$. (2) Let $e = uv \in E(G)$. Then $Z(G) = Z(G - uv) + i(G - u - v)$.

By Lemma 2.1 we know that the matching number of the path with n vertices is always a Fibonacci number such that $Z(P_n) = 1, Z(P_2) = 1, Z(P_3) = 2, \ldots$ [9].

Definition 2.1. ([8]) Let uv be an edge of the graph G. We define the Hosoya vector of G at uv, denote by $Z_{uv}(G)$, as the column vector $Z(G - u, Z(G - v), Z(G - u - v))^T$.

Note that $Z_{uv}(G) = Z(G - u, Z(G - v), Z(G - u - v))^T$.

By Lemma 2.1 we have

$$
E_{23} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
$$

where E_{23} is the permutation matrix.

Figure 1. Two graphs G_1 and G_2.

Theorem 2.1. Let G be the graph obtained from the graph H by attaching to it a square (also called a cell) at the edge xy (see Fig.1), then $Z_{uv}(G) = Q_1 Z_{xy}(H)$ and $Z_{uv}(G) = Q_2 E_{23} Z_{xy}(H)$, where

$$
Q_1 = \begin{pmatrix}
2 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}
$$

and

$$
Q_2 = \begin{pmatrix}
2 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
0 & 1 & 0 & 1
\end{pmatrix}.
$$

Proof. By Lemma 2.1 we have

$Z(G) = (2, 1, 1, 1) Z_{xy}(H)$, $Z(G - u) = (1, 0, 1, 0) Z_{xy}(H)$,$Z(G - v) = (1, 1, 0, 0) Z_{xy}(H)$, $Z(G - u - v) = (1, 0, 0, 0) Z_{xy}(H)$.

Then $Z_{uv}(G) = Q_1 Z_{xy}(H)$ holds by Definition 2.1. Similarly, we can get $Z_{uv}(G) = Q_2 E_{23} Z_{xy}(H)$ and $Z_{uv}(G) = Q_2 E_{23} Z_{xy}(H)$. The proof is complete.

Remark. By Theorem 2.1, we get $Q_1 X_0 = Q_2 E_{23} X_0$, where $X_0 = (2, 1, 1, 1)^T$ is the Hosoya vector of P_2. In particular, if H is a linear polyomino chain with $n - 1$ cells, i.e. $H = L_{n-1}$, then $Z_{uv}(L_n) = Q_1 X_0$; and if H is a zigzag polyomino chain with $n - 1$ cells, i.e. $H = Z_{n-1}$, then $Z_{uv}(Z_{n-1}) = Q_1 (Q_2 E_{23} Q_2)^{(n-2)/2} Q_2 X_0$ when n is even, otherwise.
\[i_w(Z_n) = Q_i(Q_2E_2Q_2)^{(n-1)/2} X_0. \]

3 Recurrence relations on catacondensed polyomino systems

Theorem 3.1. Let \(G_z \) be the graph obtained by attaching two graphs \(K, H \) to a cell at the edges \(uv \) and \(st \), respectively (see Fig. 1). Then \(Z_e(G_z) = Z_w'(K)Z_u'(H) \) and \(Z_w'(K) \) denotes the \((4 \times 4)\) matrix such that

\[
Z_w'(K) = \begin{cases}
(E_kZ_u'(K))_k, & \text{if } e = us, \\
(E_{uv}E_{st}Z_u'(K))_k, & \text{if } e = vt,
\end{cases}
\]

where \(k = 1,2,3,4 \), \(E_1 = E^T \), \(E_k = E_{uv}E_{st}E_2 \),

\[
E_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad E_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \end{pmatrix}.
\]

Proof. By Lemma 2.1 we have

\[
Z(G_z) = [(1 0 0 0)Z_u'(K)]Z(H) + [(0 1 0 0)Z_w'(K)]Z(H - s) + [(0 0 1 0)Z_w'(K)]Z(H - t) + [(0 0 0 1)Z_u'(K)]Z(H - t - s).
\]

Thus, \((Z_u(G_z))_k = (E_kZ_{uv}(K))^T Z_{st}(H) \). The proofs of the cases \(k = 2,3,4 \) are similar. So, we get \((Z_u(G_z))_k = (E_kZ_{uv}(K))^T Z_{st}(H) \) \((k = 1,2,3,4) \), where \((Z_u(G_z))_k \) denotes the \(k \)-th element in \(Z_u(G_z) \). Furthermore, denote by \(Z_w'(K) \) the \((4 \times 4)\) matrix such that

\[
Z_w'(K) = ((E_kZ_{uv}(K))^T)_k, \quad \text{where} \quad k = 1,2,3,4.
\]

Then we obtain \(Z_w'(G_z) = Z_w'(K)Z_u'(H) \). For \(e = vt \), the proof is similar.

![Fig. 2](image)

Two types of \(G_3 \).

Theorem 3.2. Let \(G_3 \) be the graph obtained by attaching two graphs \(K, H \) to a \(L_2 \) at the edges \(xy \) and \(st \), respectively (see Fig. 2, there are two attaching types: A-type and B-type).

1. For A-type, we have \(Z_w(G_3) = Z_{xy}(K)Z_{st}(H) \), where \(Z_{xy}(K) \) denotes the \((4 \times 4)\) matrix such that \(Z_{xy}(K) = (T_kZ_{xy}(K))^T \) \((k = 1,2,3,4) \),

\[
T_1 = \begin{pmatrix} 2 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 2 & 1 \\
1 & 0 & 1 & 1 \end{pmatrix}, \quad T_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \end{pmatrix}, \quad T_3 = \begin{pmatrix} 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \end{pmatrix}, \quad \text{and} \quad T_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \end{pmatrix}.
\]

2. For B-type, we have \(Z_w(G_3) = Z_{xy}(K)Z_{xy}(H) \), where \(Z_{xy}(K) \) denotes the \((4 \times 4)\) matrix such that \(Z_{xy}(K) = (E_kT_kE_{st}Z_{xy}(K))^T \) \((k = 1,2,3,4) \).
Proof. (1) For A-type of G_3 in Fig. 2, by Lemma 2.1 we have

$$Z(G_3) = (2 \ 1 \ 0 \ 0)Z_{uv}(K)Z(H) + (1 \ 1 \ 0 \ 0)Z_{uv}(K)Z(H - s)$$

$$+ (1 \ 0 \ 2 \ 1)Z_{v}(K)Z(H - t) + (1 \ 0 \ 1 \ 1)Z_{v}(K)Z(H - s - t).$$

Thus, $(Z_{w}(G_3))_1 = (T_{k}Z_{v}(K))^TZ_{w}(H)$. For the cases $k = 2,3,4$ the proofs are similar. Then, we get $(Z_{w}(G_3))_k = (T_{k}Z_{v}(K))^TZ_{w}(H)$ $(k = 1,2,3,4)$, where $(Z_{w}(G_3))_k$ denotes the k-th element in $Z_{w}(G_3)$. Furthermore, denote by $Z_{v}^{*}(K)$ the (4×4) matrix such that

$$Z_{v}^{*}(K) = (T_{k}Z_{v}(K))^T_k$$

where $k = 1,2,3,4$.

So we have $Z_{w}(G_3) = Z_{w}^{*}(K)Z_{w}(H)$. Similarly, we can prove (2). The proof is complete.

By the same way, we can get the following Theorem 3.2:

Theorem 3.2. Let G_3 be the graph obtained by attaching two graphs K, H to a L_3 at the edges xy and st, respectively (see Fig. 2). (1) For A-type, we have $Z_{w}(G_3) = Z_{w}^{*}(K)Z_{w}(H)$, where $Z_{v}^{*}(K)$ denotes the (4×4) matrix such that $Z_{v}^{*}(K) = (T_{k}Z_{v}(K))^T_k$ $(k = 1,2,3,4)$, $T_1 = T_2$, $T_2 = T_3$.

$$T_1 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 2 & 1
\end{pmatrix}$$

and $T_2 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1
\end{pmatrix}$.

For B-type, we have $Z_{w}(G_3) = Z_{w}^{*}(K)Z_{w}(H)$, where $Z_{v}^{*}(K)$ denotes the (4×4) matrix such that $Z_{v}^{*}(K) = (E_{k}T_{k}Z_{v}(K))^T_k$ $(k = 1,2,3,4)$.

4 Examples on catacondensed polyomino systems

Let $e = uv$ be an edge of the graph G. Denote by $\text{deg}(v)$ the degree of the vertex v in G. If $\text{deg}(u) = \text{deg}(v) = 2$ then the edge e is called the $2-2$ degree edge of G. If $\text{deg}(u) = 2$, $\text{deg}(v) = 3$ (or $\text{deg}(u) = 3$, $\text{deg}(v) = 2$) then the edge e is called the $2-3$ degree edge of G.

In what follows, we consider the catacondensed polyomino systems with Y-branch at a cell:

Example 1. Let the graph $G_i = G_i(\text{us})L_j$ be obtained by attaching a linear polyomino chain L_j with j cells to the graph G_i (see Fig. 1) at the edge us, by Theorems 2.1 and 3.1 we get

$$Z_e(G_i) = Q(\text{us})Z_{\text{us}}(K)Z_{\text{us}}(H),$$

where e is a $2-2$ degree edge of L_j in G_i, $Z_{\text{us}}(K) = (E_{k}Z_{\text{us}}(K))^T_k$ $(k = 1,2,3,4)$.

Example 2. Let the graph $G_i = G_i(\text{us})Z_j$ be obtained by attaching a corner Z_j to the graph G_i (see Fig. 1) at the edge us, by Theorems 2.1 and 3.1 we have

$$Z_e(G_i) = Q(\text{us})Q(\text{us})Z_{\text{us}}(K)Z_{\text{us}}(H)$$

or $Z_e(G_i) = Q(\text{us})Q(\text{us})Z_{\text{us}}(K)Z_{\text{us}}(H)$, where e is a $2-2$ degree edge of Z_j in G_i, $Z_{\text{us}}(K) = (E_{k}Z_{\text{us}}(K))^T_k$ $(k = 1,2,3,4)$.

Example 3. Let the graph G_i be obtained from the graphs G_i and W by identifying the edge e_w of W to a $2-2$ degree edge of Z_i in G_i, by Theorems 3.1 and 3.2, we know that

$$Z_e(G_i) = Z_{w}(G_i)Q(\text{us})Z_{\text{us}}(W),$$

369
where e is a 2-3 degree edge of Z_i in G_i,
\[
Z^*_w(G_k) = (S_kZ^*_w(K)Z^*_w(H))^T_k \quad (k = 1, 2, 3, 4)
\]
or
\[
Z^*_w(G_k) = (E_{23}S_kE_{23}Z^*_w(K)Z^*_w(H))^T_k \quad (k = 1, 2, 3, 4),
\]
where $S_k = T_k$ or T'_k.

For the catacondensed polyomino system with four branches on one cell, we can get the reduction formulas of computing its matching number through similar discussions.

5 Conclusions

The polyomino system, like hexagonal system, is a research hotspot in statistical mechanics and mathematical chemistry. This paper mainly studies the general catacondensed polyomino system, in which its central line forms a tree and each cell can have at most four adjacent cells. By the Hosoya vector, some recurrence relations on the total matching numbers of the path-like polyomino systems are given (see Theorems 2.1, 3.1 and 3.2). These relationships only depend on three types of transfer matrices (Q, E, and T_k), from which the reduction formulas of computing the total matching number of any catacondensed polyomino system via transfer matrices can be obtained.

The authors thank the support by the National Natural Science Foundation of China (Grant Nos. 11551003), and the Qinghai Natural Science Foundation of China (Grant Nos. 2020-ZJ-924).

References

8. R. Cruz, C. A. Marín, J. Rada, **MATCH** 77 (2017).