Open Access Open Access  Restricted Access Subscription or Fee Access

Experimental Study on the Effect of Head Cone Angle on the Low Velocity Oblique Inlet Process of Projectile

YUCHUAN LUO, ZHENGUI HUANG, ZHIHUA CHEN, YU HOU, ZEQING GUO

Abstract


In order to study the influence of the head cone angle and velocity of truncated cone-shaped projectiles on the cavitation and trajectory characteristics under the condition of low-speed oblique entry into water, based on the high-speed camera method, the comparative experiments of different truncated cone-shaped projectiles at low-speed oblique entry into water were carried out, and the effects of the head cone angle and velocity of truncated cone-shaped projectiles on the entry cavitation, movement speed and pitch angle were obtained. The experimental results show that the smaller the cone angle of the truncated cone projectile's head, the earlier the tail collides with the lower wall of the bubble. The smaller the head cone angle is, the faster the initial velocity is, and the later the time of deep closure of the cavitation is. The cavitation of the projectile increases with the decrease of the head cone angle and the increase of the velocity. Velocity and head cone angle have influence on the stability of water inflow. When the velocity of projectile is lower than the critical value, it tends to increase, and when it is higher than the critical value, it tends to decrease.

Keywords


truncated cone; ballistic characteristics; head cone angle; inflow stability; critical valueText


DOI
10.12783/ballistics2019/33209

Full Text:

PDF

Refbacks

  • There are currently no refbacks.